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Abstract
Open pit mines contain ore that is to be extracted from the surface downwards to obtain a
profit. A minimum mining width is necessary for mining equipment to extract the material
from the surface. Considering that current industry practice lacks a standard methodology
for optimizing these designs, it may lead to inconsistent, subjective, and suboptimal results.
Automatic design of practicable portions of the mines called pushbacks is a desirable tool
for the mining industry. This article proposes a new approach based on an integer linear
programming model (ILP) that determines which blocks should be extracted to maximize
profit while respecting geospatial and design constraints. Design constraints require that the
minimum width be respected at the bottom of the mine and between successive pushbacks.
The results obtained in minutes by the application of this ILP to three cases are studied and
they show the applicability of this programming model.
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1. Introduction

In this article, we address the problem of open pit mine design, which consists of extracting
valuable materials by digging from the surface downwards. This extraction method is very
relevant to the mining industry and the Chilean economy.

To address this problem, mine planners rely on a discretization of the ore deposit into a
3-D array of blocks. This set of blocks and their attributes, such as ore grades, tonnages,
recoveries, and others, form a database named the block model. This block model, together
with the geotechnical constraints related to the pit wall slopes and the long-term economic
parameters (such as costs and commodity prices), are the basic inputs for open pit strategic
mine planning. From these data, mine planners determine a design for the mine operation and
a mining schedule that indicates which blocks should be extracted, when this should happen,
and what to do with the extracted blocks. These decisions must be made such that the value
of the mine be maximized, and therefore, planners rely on models and algorithms to optimize
profit.

The first step to design and plan an open pit mine is to compute the ultimate or final pit,
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which determines the limits of what is economically mineable from a given deposit. It identifies
which blocks should be mined and which ones should be left in the ground (Dagdelen 2001).
One particular by-product of the process described above is the definition of a specific set of
blocks, namely a pushback, which corresponds to a manageable portion of the deposit inside
the ultimate pit limit that may be mined, processed, and refined in a number of years/periods
Asad and Topal (2011).

The ultimate pit problem can be formalized as follows. Let B be the set of blocks and b, b′

denote elements of this set. We are given, for each b ∈ B an economic value vb, and a set
of precedence arcs P ⊂ B × B such that (b, b′) ∈ P means that the stability of the pit walls
requires that to be able to extract block b it is also necessary to extract b′. The problem then
consists in finding a subset S ⊂ B such that it has the maximum undiscounted economic
value

∑
b∈S vb and respects the safety of walls, i.e. ∀(b, b′) ∈ P, b ∈ S ⇒ b′ ∈ S.

In order to split the ultimate pit into smaller manageable volumes, the ultimate pit problem
can be used to generate not one but several nested pushbacks. This is done by using the fact
that the economic value of each block is a function of the price p, (i.e. vb = φ(p, b)) and
replacing the price by λp, where λ ∈]0, 1] is called the revenue factor. In this way, each value
of λ induces a difference instance of the ultimate pit problem, where the economic value of
each block is vb,λ = φ(λp, b) (in particular, the ultimate pit corresponds to the case λ = 1).
Nested pushbacks are therefore generated by using the property that if Sλ is the optimal
solution for λ, when λ ≤ λ′ ⇒ Sλ ⊂ Sλ′ and computing the solution for many values of λ.

The ultimate pit problem can be solved efficiently either by the Lerchs and Grossman (1965)
algorithm or through its conversion to a max-flow min-cut problem (Picard 1976; Hochbaum
and Chen 2000). However, it can also be formulated as an integer linear program. We recall
its formulation here, but considering its parametrization in terms of the revenue factor λ, as
it is convenient to present its extension later in the article.

Let xb be a binary variable so that xb = 1 if and only if block b ∈ B is extracted. Then to
solve the ultimate pit problem with revenue factor λ is equivalent to solve

UP (λ) max
∑
b∈B

vb,λxb

xb ≤ xb′ ∀(b, b′) ∈ P
xb ∈ {0, 1} ∀b ∈ B

Consider Figure 1, which shows a small example of the ultimate pit problem’s potential
output with colours representing different excavation levels or benches (darker grey colours
are for deeper ones). Consider the Komatsu P&H 4100XPC shovel, which has approximate
dimensions of 15x15 meters and a cut radius of 24m (Komatsu 2018). It is clear that this
shovel does not fit at the deepest level, and it could not move freely at the bench just above
due to the one block’s isthmus illustrated in the figure. Using this output as a guide for the
design, a mine planner would have to decide which part has to be eroded or extended such
that the shovel can operate. For this equipment, 30 meters of minimum width or minimum
bottom width are generally considered for its movements at the bottom of the mine. Therefore,
a mine planner would exclude the lowest level from the design, and add more space in the
other levels, probably increasing the total waste to be removed, which may produce a negative
impact on profit.

In addition to calculating the ultimate pit, mine planners generate many nested pits by
varying λ ∈]0, 1] and then select some specific ones. The chosen pits, which we refer to as
pushbacks are then used as a basis for the mine design, which is not done with block support
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Figure 1. A conceptual 2-D example illustrating relative sizes of a shovel within a
pushback profile. (Plan view, darker colours represent deeper mine levels.)

but considering actual mining volumes and other elements, such as access ramps and the use
of specialized CAD software. Because the same base model (UP (λ)) is used to compute all
pushbacks, it is clear that the problem of minimum bottom width may arise in each of them.
Moreover, there is the issue of leaving enough mining width or bench width between successive
pushbacks.

All the above makes the selection of pushbacks from the mine pits a complex task that
involves simultaneous consideration of different elements, such as the geometry of each push-
back, but also the distance that must exist between the contour of subsequent pushbacks to
provide space for access and operation of large pieces of equipment, the tonnage of materials
they contain, and ultimately that they can support an efficient production schedule, i.e., an
extraction order that maximizes the net present value.

Unfortunately, this process, despite of the availability of software that can assist with the
computation and selection of the pushbacks, is time-consuming and highly dependent on
the user. It follows that there is no guarantee that the set of pushbacks selected without
considering such constraints will be near the optimal selection.

To show that (UP ) may not provide a good approximation to the problem with constraints
at the bottom, let us consider the artificial 2-D example in Figure 2, where safety wall con-
straints correspond to a slope angle of 45o. In this example, we have coloured six sets of blocks
(orange, red, green, grey, blue, and yellow), labelled A,B,C,D,E, and F , respectively. Sets
A and B consists of one block each. For this example, we assume that all blocks (except those
in A and B) have a negative economic value. Moreover, we assume that the total economic
values of C,D,E, F are v(C) = −100, v(D) = −50, v(E) = −50 and v(F ) = −v(A), respec-
tively. Let (UP5) be the ultimate pit problem that considers a minimum bottom width of five
blocks. We observe that:

• if v(A) > 150, then the optimal solution to (UP ) is P1 = A ∪ B ∪ C ∪ D and has an
economic value v1 = v(A) + v(B)− 150;
• if v(B) > 100, then the optimal solution to (UP5) is the set P2 = B ∪ D ∪ E, with

economic value v2 = v(B)− 100.

It follows that if v(A) > 150 and v(B) > 100, the difference between the economic values of
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Figure 2. A conceptual 2-D example of the solutions for the ultimate pit problem with and
without minimum bottom width. Values of blocks A,B are positive. Depending on the
values of blocks A and B, the optimal solution of the ultimate pit and the one considering a
minimum bottom width of five blocks can be very different in value and shape.

the optimal solutions is v1− v2 = v(A) + v(C)− v(E) = v(A)− 50, which can be large if v(A)
is large. Thus, even though the optimal value of (UP ) is an upper bound of (UP5), it may be
far from being tight. For example, for v(A) = 1000 and v(B) = 150, we have v1 = 1000 and
v2 = 50 that corresponds to a 95% decrease in economic value. We also notice that P2 6⊆ P1,
P1 6⊆ P2, P1 is composed of 169 blocks and P2 of 60 blocks that corresponds to a 64.5%
decrease in the number of blocks.

The main contribution of this work is that we address the issue of modelling the problem
of computing a pushback that complies with slope angles and also with a shape that provides
enough space for the operation and movement of large pieces of equipment at the bottom
of the mine. We achieve this by extending the ultimate pit problem to consider additional
constraints related to the bottom of the pit and requiring the design to respect two geometric
properties,

• Continuity imposes that disconnected parts of the design correspond to different push-
backs. Otherwise, it would result in more haulage access points and increased operational
costs due to relocation.
• Smoothness is related to the shape of the bottom of the pit and looks to have enough

space for operating and moving equipment within the bottom of the pit. The minimum
mining width is ensured by preventing the extraction of lonely blocks at the bottom and,
instead of that, to force extraction of minimum areas. The space for moving equipment
is ensured by not allowing the creation of isthmuses, i.e., narrow passages between
operational areas.

An example of the smoothness can be seen in Figure 3, which illustrates the case where the
minimum width requirement is of squares of 3×3 blocks. Figure 3(a) shows an unfeasible case
because of the one block protuberances that cannot be covered by the squares, Figure 3(b)
shows the union of two squares (i.e., without protuberances) that is feasible in terms of
minimum bottom width, but not for moving equipment because of the narrow intersection.
Finally Figure 3(c) shows a feasible pit bottom, which consists of the case (b) plus two greyed
blocks that provide enough space for moving between zones.

Notice that the constraints we incorporate in the problem affect the size and shape of the
bottom of the pit, but because of slope precedences, their effects propagate and affect the
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Figure 3. Plan-view of examples of bottom designs for a minimum bottom width of three
blocks

whole pushback’s shape and size. However, as in the case of the ultimate pit, the mathematical
model that we present computes only one pushback at a time. Therefore, it does not address
the problem of the minimum width between consecutive pushbacks. In this sense, our model
can mimic the current approach to generate multiple pushbacks by changing the revenue
factor and then selecting pushbacks with a minimum width between consecutive ones.

The article is organized as follows. In Section 2, we provide a summary of the related works.
Section 3 contains all the details concerning the modelling, notation and problem statement.
Three different cases are studied in Section 4, showing how the model and techniques can be
used to generate nested pits with the geometric properties defined above. Finally, Section 5
contains some concluding remarks and perspectives.

2. Related work

The problem of strategic mine planning must deal with two dimensions: the design of the
mine and the optimization of production scheduling. The former is related to the definition
of operational volumes that support a proper extraction over time. The latter corresponds
precisely to scheduling the extraction and processing of portions of these volumes over time
in such a way that the maximum net present value (NPV) is attained.

In order to approach the problem of strategic mine design, the industry has relied on a
method consisting of the following steps: (i) compute the ultimate and nested pits (ii) select
some pits (now pushbacks) based on several criteria and preliminary production plans, (iii)
use the pushbacks as a guide to design the mine, and (iv) optimize production scheduling
using updated cost values and designed volumes.

The proposed model aims to improve the results of step (i), by providing better candidates
for pushback selection for step (ii) and easing the design at step (iii). Because of this, this
literature review focuses not only on mine design aspects but also covers some background
on production scheduling.

2.1. Mine Design

As reported before, the fundamental problem in mine design consists of determining the push-
backs, for which planners rely on the final pit or ultimate pit problem and its parametrization
to determine nested pits. The (UP ) problem (formalized in the previous section) was in-
troduced together with an algorithm for its solution by Lerchs and Grossman (1965). Picard
(1976) demonstrated that the final pit problem is equivalent to the maximum closure problem,
which in turn can be formulated as a minimum cut problem. Hochbaum proposed an efficient
polynomial algorithm based on a maximum pseudo-flow approach that solves large minimum
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cut problems fast (Hochbaum and Chen 2000; Hochbaum 2008; Hochbaum and Orlin 2012).
Lerchs and Grossman (1965) also showed that nested pits could be produced by apply-

ing their algorithm by varying the block revenues, therefore providing the basis to address
the whole problem using a trial and error approach to satisfy resource constraints, among
other requirements. This method is commonly used in commercial software (Whittle 2018).
A complete reference to the generation of pushbacks from the nested pits can be found in
Meagher, Dimitrakopoulos, and Avis (2014), which focus on the inconsistent sizes between
successive pushbacks that may occur, namely the gap problem. Many studies about push-
back generation deal with NPV optimization under resource constraints without considering
enough geometric requirements (Ramazan and Dagdelen 1998; Consuegra and Dimitrakopou-
los 2010; Goodfellow and Dimitrakopoulos 2013; Meagher, Dimitrakopoulos, and Vidal 2014;
Asad, Dimitrakopoulos, and van Eldert 2014). The selected pushbacks are then used as guides
to plan the phases, including the ramps and minimum mining widths required for the material
extraction.

A problem closely related to ours is addressed by Bai et al. (2018). They proposed an
approach based on an iterative application of geometric operators to generate feasible push-
backs that respect the minimum bench and bottom widths, smoothness, and continuity. Their
approach works sequentially for each pushback in two stages: first, it generates a current
pushback through a parametrization of the price and the search of volumes that comply with
capacity constraints in such a way that the current pushback contains the previous one. Sec-
ond, it applies geometric operators from the bottom to the top of the mine that looks to
repair the shape of the obtained volumes. For this second stage,

• They model the smoothness by a parameter named NS and they require that the pit
bottom’s shape and its complement (as sets of blocks) contain at least NS consecutive
blocks in the X and Y-axis directions. This is different from our approach because, for
example, for NS = 3, the case Figure 3(b) is feasible in their modelling, even though
there is a narrow area between the two squares.
• They address the problem of minimum width by introducing a wide area, where they

impose the minimum distance between pushbacks, and a sub-wide area, where this
constraint is relaxed because it could be extracted using smaller equipment but at a
higher cost. They define a parameter AW that is the maximum distance between a block
in the sub-wide area and the adjacent wide-area. This parameter permits to control the
size of this sub-wide area.

The article considers four tools, which are used to construct geometrical operators: (i)
dilating, which adds blocks to a pushback to respect the minimum width; (ii) eroding, which
removed blocks; (iii) opening, which first erodes and then dilates; and (iv) closing, which does
the opposite of opening. The geometric operators are mainly,

• An adaptive opening operator to obtain shapes of the sub-wide area that are triangles
of base length AW . For this, they apply an opening considering the minimum width
TW and operates AW times the dilating tool lowering the TW parameter iteratively.
• A smoothness operator that uses both opening and closing tools to eliminate cavities

and protuberances.
• A continuity operator that computes connected components and keeps the largest one.

Bai et al. (2018) apply their algorithm to two case studies and report a decrease of 0.5%
and 7% in the NPV between the initial pushbacks they used and the practicable ones.

Another related work by Tabesh, Mieth, and Askari Nasab (2014) develops a multi-step
pushback design algorithm based on mathematical programming and clustering to generate
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pushbacks composed of mining polygons. They apply a greedy heuristic approach and local
search that assigns blocks to pushbacks in such a way that tonnages in each pushback do not
exceed maximum values. They use a hierarchical clustering algorithm that generates a lot of
small shapes. A shape refinement procedure is provided as a post-treatment to obtain more
practicable forms that are considered for the scheduling.

From a practical point of view, software proposes different tools to address the problem of
minimum mining width. For example, Geovia Whittle has a mining width module that applies
distance templates to respect mining width requirements in the X and Y-axis directions on
the bottom and benches of pit shells (Whittle 2018). Juarez et al. (2014) reported a tool in
DeepMine software that uses an approximate dynamic programming algorithm that chooses
the pushbacks corresponding to the best NPV from a generated tree of alternative practicable
pushbacks. However, the details of this methodology are not publicly available.

Finally, it is worth mentioning two complementary works related to optimized mine design.
Nancel-Penard et al. (2019) introduce a methodology based on a linear programming model
that automatically generate a pushback design at block level that facilitates the space of ramps
with the resulting envelope having the maximum undiscounted value. Parra et al. (2017) study
the impact of pushback selection in terms of geomechanical constraints and stability of the
pit walls.

2.2. Production Scheduling

Most studies in this area fall under the application of direct block scheduling proposed by
Johnson (1968, 1969), which is an alternative to the nested pits methodology that relies on
mathematical programming to schedule the extraction of blocks over a set of time-periods.
The objective is to maximize the NPV of the set of extracted blocks. The modelling, in
this case, considers: precedences due to slope constraints, capacity and blending constraints
at each period, and the possibility of sending blocks to different processing facilities. These
constraints can also be combined to address extraction limited to predefined pushbacks. Es-
pinoza et al. (2013) introduced a set of publicly available instances for direct block scheduling
allowing researchers to compare results from different heuristic approaches (Lamghari, Dimi-
trakopoulos, and Ferland 2014; Liu and Kozan 2016; Samavati et al. 2017; Jelvez et al. 2016;
Jélvez et al. 2020).

Previous references focus on block scheduling, considering only precedence constraints to
determine the obtained geometry. However, the work from Cullenbine, Wood, and Newman
(2011) stands out because it incorporates some simple geometric constraints. Indeed, this
article introduces an extension of the direct block scheduling that aims to have some space at
the bottom, for which it adds an extra constraint that requires at least two adjacent blocks
to be extracted at the bottom of the pit. The obtained model is difficult to be solved, and;
therefore, the authors also proposed a rolling horizon heuristic to find good solutions.

Indeed, it is possible to use precedence constraints to convey the solutions to respect the
extracting order between the pushbacks calculated using nested pits. An alternative to direct
block scheduling is bench-phase scheduling, where sets of blocks composed by the intersection
of phases with benches are scheduled in such a way that slope constraints are respected.

BHP Billiton software tool called Blasor implements a MIP for bench-phase scheduling
through a clustering algorithm (Stone et al. 2007). The clustering is done with a two-level
aggregation. Similar blocks are aggregated into bins, and these are joined into specific sets
called “AGG” such that the boundaries of aggregated blocks respect the maximum slope
constraints. A recent study by Letelier et al. (2020) exposes direct block scheduling and
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bench-phase models for which they present preprocessing, cutting plane techniques, heuristic
approaches and a customized branch-and-bound that permit to obtain better bounds and
feasible solutions with low relative gaps.

Because using direct block scheduling to calculate NPV can be time-consuming, in this ar-
ticle, we preferred to follow a simpler approach described in Bai et al. (2018), which generates
a feasible block schedule following simple rules and applying a discount rate on each block.
We provide the details in Section 4.1.2.

3. Integer linear programming model for the ultimate pit with minimum
bottom width

As reported before, the integer linear programming model (ILP) presented here is an extension
of the final pit model presented in Section 1, which aims to generate a pit geometry that
complies with the minimum bottom width. Because of this, as in the case of the ultimate pit,
let B be the set of blocks, vb be the profit associated to block b ∈ B and P be the set of slope
precedences.

The extension that we consider takes into account geometric properties treated in detail
in next section. It also considers tonnage targets, which may be useful to control the gap
problem. For this, we introduce a target W , and a tolerance parameter δ, and require that
the pit’s total tonnage has to be between the values (1− δ)W and (1 + δ)W .

For practical reasons, it is convenient to introduce a set O ⊂ B on which the smoothness
constraints are imposed. This set is defined as leaving out blocks that are too close to the
topography, where smoothness constraints are irrelevant or may not apply.

3.1. Modeling the shape of the pit bottom

We consider three aspects for modelling the smoothness: minimum space around each block,
space for movement of equipment, and absence of cavities. We explain these concepts that
involve blocks at the same level and how they are modelled in the ILP.

3.1.1. Minimum space around each block

Figure 4. (a) (b) (c) (d) Plan-view of the square areas S (in grey) relative to a block b for a
minimum bottom width of 2 blocks.

This property is modelled by asking that if a block is extracted, then it belongs at least
to a square area of d2 blocks that is also extracted at the same level. For this, given a block
b ∈ B, we denote as Sd(b) the set of squared areas of side d containing b. Figure 4 shows
the squares area S of S2(b). Notice that for blocks near the limits of the block model, some

8



“squared area” is not complete because some hypothetic blocks fall out of the block model.
Indeed, for implementation purposes, we do not consider these as elements of Sd(b).

3.1.2. Minimum space for movement between areas

This property is to prevent isthmuses between zones, like the one in Figure 3(b), which may
prevent equipment movement between areas at the same level. To model this, we consider that
if a specific pattern of extracted blocks appears in a bench, other blocks must be extracted.
Figure 5 offers a plan-view of some examples of patterns and the blocks whose extraction
they force: if the blocks in the blue pattern are extracted, then at least one red block must
also be extracted.

For the patterns in Figure 5(a) that correspond to a distance d = 3 blocks, Figure 5(b)
shows some feasible designs (blocks in dark grey) among others permitted by those patterns.
We denote as Id the set of patterns, Fi its i-th pattern (blue blocks) and |Fi| the size of i-th
pattern. In Figure 5(a), the first three |Fi| patterns have a size of 18, the last pattern a size
of 17.

Notice that a pattern is only a shape, i.e., it is not linked to actual blocks, and therefore it
may appear several times in the pit. To anchor a given pattern to a specific set of blocks, let
us define Fi(b) ⊂ B, i ∈ Id as the blocks b′ ∈ B in the i-th pattern (blue blocks) when block
b is located at the South-West corner of the pattern.

As mentioned before, the extraction of blocks in Fi(b) forces at least one block in a second
pattern (red blocks) to be extracted. The set of such blocks is denoted as Ti(b). It is worth
noting that the constraints relative to the minimum space around each extracted red block
will apply as well as the ones that fill cavities.

This new modelling is less restrictive than classic precedences to allow the mathematical
model to find a precise design that eliminates the isthmuses, optimizes the overall value, and
may keep some parts of the original pit’s contour.

Figure 5. (a) Plan-view of patterns to ensure movement space at the pit bottoms; (b)
plan-view of feasible designs

3.1.3. Cavities

The fact that each block in dark grey belongs to a square area is not sufficient to remove
all the unwanted small cavities similar to those described in Bai et al. (2018). A cavity is
composed of unextracted blocks in the X or Y-axis direction positioned between 2 extracted
blocks (Figure 6(a) presents two cavities: one between blocks i and j and one between j and
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k). To prevent this type of shape, we introduce a distance parameter d′ that corresponds to
the maximum size of unwanted cavities in the X or Y-axis direction. For this, let us denote
as bx, by, bz the x, y and z coordinates of block b respectively, and let ∆ be the size of the
blocks (each side), then

WEd′ =
{

(b′, b, b′′) ∈ B3 : b′y = by = b′′y, b
′
z = bz = b′′z , b

′′
x − b′x ≤ d′∆, b′x ≤ bx ≤ b′′x

}
,

NSd′ =
{

(b′, b, b′′) ∈ B3 : b′x = bx = b′′x, b
′
z = bz = b′′z , b

′′
y − b′y ≤ d′∆, b′y ≤ by ≤ b′′y

}
.

Figure 6(b) presents an example of WEd′ when d′ = 9. Because blocks b′ and b′′ have the
same y coordinate and at a distance at most d′, then triplet (b′, b, b′′) is an element of WEd′ .

Figure 6. An example of cavities and convexity constraint. (a) Plant-view of blocks
(extracted blocks are in grey) showing two cavities. (b) An element of WEd′ for d′ = 9.
Greyed blocks b′, b′′ represent blocks that, if extracted, force the extraction of all blocks b in
between.

3.2. Mathematical formulation

As in the case of the ultimate pit, we consider binary variables xb, where xb = 1 if and only
if block b ∈ B is extracted. We introduce the additional decision variables ydbS , which is equal
to 1 if and only block b is extracted and all blocks in S ∈ Sd(b) are also extracted.

Table 1 summarizes the notation of the model for the geometrically constrained ultimate
pit problem (GCUP(λ) for short), which is presented now.

GCUP(λ) max
∑
b∈B

vb,λ xb (1)

xb ≤ xb′ ∀(b, b′) ∈ P (2)∑
S∈Sd(b)

ydbS ≥ xb ∀b ∈ O (3)

ydbS ≤ xb′ ∀b ∈ O, ∀S ∈ Sd(b), ∀b′ ∈ S (4)

xb′ + xb′′ − xb ≤ 1 ∀(b′, b, b′′) ∈ WEd′ ∪NSd′ (5)∑
b′∈Fi(b)

xb′ −
∑

b′′∈Ti(b)

xb′′ ≤ |Fi| − 1 ∀b ∈ O, i ∈ Id (6)

(1− δ)W ≤
∑
b∈B

wb xb ≤ (1 + δ)W (7)

xb ∈ {0, 1} ∀b ∈ B (8)

yb ∈ {0, 1} ∀b ∈ O (9)
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Symbol Description

B Set of blocks
O Set of blocks over which to apply smoothness constraints
Id Set of indexes of smoothness pattern Fi with respect to the

minimum bottom width d
Fi,Ti Smoothness patterns
Sd(b) Set of squared areas of side d that contain block b
b, b′, b′′ Blocks, elements of B
d Minimum bottom width measured in quantity of block sides
d′ Maximum cavity size parameter measured in quantity of

block sides to be filled by blocks in the X and Y-axis di-
rections

WEd′ Set of triplets (b1, b2, b3) such that the blocks are aligned in
the X-axis and at the same level, distance between b1, b3 is
d′, and b2 is between b1 and b3

NSd′ Set of triplets (b1, b2, b3) such that the blocks are aligned in
the X-axis and at the same level, distance between b1, b3 is
d′, and b2 is between b1 and b3

P Set of slope precedence arcs
λ Revenue factor, λ = 1 for the final pit compute
vb,λ Economic value perceived if block b in B is extracted
wb Tonnage of block b
W Tonnage of the final pit without minimum mining width that

corresponds to the revenue factor λ
δ Tonnage tolerance

Table 1. Notation for the mathematical formulations.
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The objective function (1) maximizes the overall undiscounted profit of all blocks in the
designed pit. Constraints (2) is the classic slope precedence constraint of the final pit model.
Constraints (3) state that all extracted blocks outside of the topography must belong at least
to a d × d square of blocks. Constraints (4) state that all the blocks to complete the d × d
square area S must be extracted to set the variable ydbS to the value 1. Constraints (5) state
that the blocks between two extracted blocks b′ and b′′, that belong to an unwanted cavity
in the X or Y-axis direction, have to be extracted. Constraints (6) state that if a smoothness
pattern set Fi(b) of blocks are extracted, then at least one block of the set Ti(b) have to be
extracted. Constraint (7) states that the overall extracted rock tonnage is inside an interval
defined by a tolerance of δ% around the rock tonnage of the final pit without minimum mining
width. Constraints (8) and (9) denote the nature of the variables.

As the variables ydbS and the constraints (3)-(6) break the structure of the problem, the
proposed problem cannot be solved with Lerchs and Grossmann or the pseudo-flow algorithm.
We present here a preprocessing that is a heuristic approach. It consists of only considering
an extended three-dimensional form of the ultimate pit in the X and Y-axis directions. This
extension is done with blocks in such a way that the distance between them and blocks at
the same bench in the ultimate pit is less than or equal to d.

4. Numerical experiments

The MineLink library developed at Delphos Mine Planning Laboratory at Universidad de
Chile (Delphos 2019) was used to develop the code to implement this model. This library
provides utilities to manage the block models, compute block values and generate precedence
arcs. The code was written in Python, and it was developed to manage the data sets and
implement the integer linear programming model GCUP(λ). For all computations, linear op-
timization of the model was solved using Gurobi 8.1 (Gurobi 2019) and the experiments run
on a PC with 10 CPU Xeon E5 2660 v3 (2.60 GHz) with 128 GB of RAM under a Microsoft
Windows 7 environment.

We applied the ILP to three block models. The first two models are available publicly in
MineLib (Espinoza et al. 2013): KD, which is a copper mine and has 14,153 blocks of size
20m×20m×15m, and Marvin, which is a fictitious gold and copper mine included in Whittle
(Gemcom 2018) and consists of 53,271 blocks of size 30m × 30m × 30m. The third model is
called D3 and is a part of a copper mine that contains 52,850 blocks of size 25m×25m×15m.
We applied a minimum bottom width of three blocks for all block models, which corresponds to
60 meters for KD, 90 meters for Marvin, and 75 meters for D3 model. The maximum distance
to fill cavities (parameter d′) corresponded to 4 blocks in all models. The tonnage tolerance
(parameter δ of the programming model) was 5% for all models. Marvin and KD block values
are used from MineLib without changes. However, for D3, the economic parameters are shown
in Table 2.

The final pit characteristics for the three models are given in Table 3. These characteristics
are the undiscounted value in millions of US dollars, the extracted rock tonnage (Rock), the
ore tonnage (Ore) in millions of tons, and the number of extracted blocks. These final pits
were computed without considering a minimum mining width using an implementation of the
pseudo-flow algorithm proposed by Hochbaum and Chen (2000).
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Table 2. Parameters to generate the economic value of blocks for D3 model

Economic parameter Value for D3

Metallurgical recovery Cu 0.88
Metal price Cu 2.5 $/lb
Selling cost Cu 0.4 $/lb
Mining cost 0.9 $/ton
Processing cost 4.0 $/ton

Table 3. Original final pit economic value, weight and number of blocks

Final pit

Block model Value Rock Ore Blocks
name M$ Mton Mton #

KD 652.2 190.6 95.8 12,154
Marvin 1,426.9 527.2 312.0 8,517
D3 7,491.3 397.4 256.5 16,726

4.1. Pushback selection and production scheduling

In this section we describe how we generate the pushbacks and a production schedule to
evaluate the NPV of the resulting plans.

4.1.1. Pushback generation

In order to generate pushbacks, we consider for each block model a series of values of revenue
factors and select some 0 < λ1 < λ2 < · · · < λL = 1 as pushbacks. These selected values of
λ are used for block valorization in the proposed model and their corresponding tonnages as
targets. When generating a pushback, previous practicable ones are considered to be mined,
which allows enforcing a minimum bench width at least equal to the bottom width and
a minimum bottom width for each pushback. This approach also ensures that the results
respect the nested property of UP (λ).

4.1.2. NPV calculation

We used the same method as the one presented in Bai et al. (2018). It consists of defining
a block sequence inside each pushback and then discount each block value depending on its
sequence number in the overall scheduling. This block sequence is obtained by applying the
following three precedence levels to the pushback designs: (1) the blocks in an earlier pushback
precede those in later pushbacks; (2) in one pushback, the blocks on higher bench precede
those on a lower bench; (3) on each bench, the blocks are extracted from west to east. The
discount rate (5.6655 × 10−5) is applied on each block. For the Marvin case, the discount of
the last block of the final pit is 1/(1 + 5.6655× 10−5)8517 = 0.62; this is the same rate value
applied to the last block of the final pit from Bai et al. (2018) experiments.
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4.2. Numerical results

Table 4 presents the results of the application of the proposed GCUP(1) linear programming
model for the computation of the final pit that takes into account the minimum width and
design requirements. The table presents the number of variables and constraints, the undis-
counted value in million US dollars, the relative gap reported by Gurobi between the best
continuous bound and the obtained integer solution, and the computation time in seconds
are given for each experiment. The results are presented for two cases: the model applied to
the whole block model and with the preprocessing described in Section 3, which eliminates
blocks that are too far from the ultimate pit.

4.2.1. Ultimate pits and preprocessing

Table 4 shows that the preprocessing lowers the computation time from three times for KD
to more than fourteen times for D3 without any loss on the objective value. As expected,
the practicable final pit’s undiscounted value is lower than the original one given in Table 3
(from 0.05% for Marvin to 0.31% for D3). A comparison between the extracted rock and ore
tonnages show that those tonnages are lower for the practicable final pit than the original
ones for KD (−0.27% and −0.36% respectively) and greater for Marvin (0, 15% and 0.11%
resp.) and D3 (3.51% and 0.21% resp.). The most significant variation is observed for D3,
which is consistent with the NPV results that show the same.

Table 4. Results of Branch and Bound applied on GCUP(1) for the practicable final pit
computation

without preprocessing with preprocessing

Var. Constr. Value Gap Time Var. Const. Value Gap Time
Instance # # M$ % [s] # # M$ % [s]

KD 121,748 1,122,281 650.4 0.01 58 105,390 1,091,516 650.4 0.01 19

Marvin 499,752 4,910,844 1,426.2 0.01 406 109,010 840,100 1,426.2 0.01 40
D3 570,039 6,506,206 7,467.9 0.17 1,151 157,487 1,702,991 7,467.9 0.01 78

Figure 7 presents plan views of the bottom of the original and practicable final pit obtained
by the proposed ILP with the preprocessing for each block model. Level 0 corresponds to the
lowest level of each design. We observe the following for each block model,

• In the case of KD, the final pit is nearly a practicable pit; hence only a few protuberances
are eliminated by the ILP at the lowest levels.
• For Marvin, four cavities in the original final pit are filled at levels 0 and one at level

1. Some blocks are added at the north of level 1 to complete a 3 × 3 square of blocks.
At the south-east, a protuberance of 2 blocks from level 3 to level 14 in the Y-axis
direction is dilated to 3 blocks in the practicable final pit to respect the minimum width
requirements.
• As for D3, the final pit design is far from respecting the minimum bottom width, and

therefore the outputs are very different. The practicable final pit for D3 shows larger
floors at levels 2, 3, 13, and 14 that respect the minimum distance requirements and
therefore is by far more operational than the original final pit design. It is worth noting
that obtaining a practicable design with CAD software that optimizes the economic
value for D3 is not an easy task to carry on.
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As expected, the original 3D form is eroded somewhere and extended elsewhere to optimize
the final pit’s value respecting the design and slope precedence constraints of the proposed
ILP. At some levels, the practicable contours are closed to the original ones and can be very
different at other levels, as shown by the D3 case.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Bottom-view of (a) original final pit, (b) practicable final pit from KD model; (c)
original final pit, (d) practicable final pit from Marvin model; (e) original final pit, (f)
practicable final pit from D3 model

4.2.2. Pushback generation

Table 5 summarizes the results of the original pushbacks generated by the classical nested
pits methodology using different revenue factors and those obtained by applying the proposed
pushback generation methodology. For each experiment, the undiscounted value in million
US dollars, the extracted rock tonnage (Rock), the extracted ore tonnage (Ore) in million
of tons, and the number of extracted blocks are presented. We observe that for KD and
D3, the proposed approach can achieve similar values in terms of tonnage and value, while
generating better geometries for design. On the other hand, for Marvin, we see noticeable
differences, and one pushback with a negative value, which is not desirable in practice. In
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terms of ore tonnages, for Marvin’s case, the differences are important between the original
and practicable pushbacks for the second (-23.84%) and the third ones (-12,06%). Therefore,
it may be interesting to evaluate other revenue factors scenario to generate a smaller or
different form for the first pushback that could permit other practicable forms for the second
one. This approach also ensure that the results respect the nested property of UP (λ).

Table 5. Results of original pushbacks and those obtained by the proposed pushback
generation

Original pushbacks Practicable pushbacks

Value Rock Ore Blocks Value Rock Ore Blocks time

Inst. - λ M$ Mton Mton # M$ Mton Mton # [s]

KD - 0.15 388.5 68.9 53.6 4,384 387.1 72.4 55.0 4,613 404
KD - 0.28 164.5 51.7 25.9 3,396 139.8 43.5 20.8 2,767 39

KD - 1.00 99.2 70.0 16.3 4,474 123.5 74.1 19.6 4,743 28

KD Total 652.2 190.6 95.8 12,154 650.4 190.0 95.4 12,123 476

Marvin - 0.50 1,001.3 225.2 176.3 3,640 967.1 215.4 170.5 3,489 156

Marvin - 0.60 263.0 111.3 60.0 1,755 -90.6 105.1 9.4 2,029 15
Marvin - 0.75 131.9 107.8 46.3 1,757 203.4 142.7 68.6 2,114 6

Marvin - 1.00 30.7 82.9 29.4 1,365 346.3 64.8 63.8 899 1

Marvin Total 1426.9 527.2 312.0 8,517 1,426.2 528.0 312.3 8,531 226

D3 - 0.10 5,203.3 171.7 145.5 7,240 4,566.4 163.2 136.3 6,887 1,125

D3 - 0.14 1,464.4 88.2 57.4 3,710 953.8 84.6 40.9 3,556 30

D3 - 1.00 823.5 137.4 53.7 5,776 1,947.7 163.5 79.8 6,869 3
D3 Total 7,491.3 397.4 256.5 16,726 7,467.9 411.3 257.1 17,312 1,158

Figure 8 shows a section view of the pushbacks obtained with the proposed model and the
standard nested pit approach, using different colours to represent the shape differences for
consecutive values of the revenue factor λ. We observe the following for each block model,

• In the case of KD, the original pushbacks are nearly operational ones and grow from
West to East. But for example, in the South-West of the mine, there are parts of the
second original pushback that do not respect the bottom width of three sides of block and
do not respect the continuity property of the design. It can also be noted in Figure 8(b)
that the second pushback respects all the design requirements.
• For Marvin, in Figure 8(c) all the original pushbacks but the first one do not respect the

minimum bench width. In a practicable design that keeps the form of the first pushback,
the other ones were obliged to grow from top to bottom to respect the design require-
ments, the slope precedences, and the extraction tonnages constraints. This explains
the negative undiscounted value of the second pushback.
• Finally, in the case of D3, Figure 8(e) shows that all the original pushbacks do not

respect the minimum bottom width of three sides of block. However, this issue is solved
by the practicable design generated by our model (Figure 8(f)).

Figure 9 shows the NPV for the original nested pits and for the practicable pushbacks for
each study case. We observe that for KD, the proposed approach achieves similar values in
terms of NPV. For Marvin, the second pushback has a negative value, which is not desirable.

Finally, Table 6 summarizes the results presented in Table 5 and Figure 9 for each overall
pit showing the variation on the undiscounted value, rock tonnage and NPV for each case.
We can observe that the tonnage variation is under 5% around the original rock tonnage.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Section-view of (a) original pushbacks, (b) practicable pushbacks from KD
model; (c) original pushbacks, (d) practicable pushbacks from Marvin model; (e) original
pushbacks, (f) practicable pushbacks from D3 model. OPB-i means original pubshback
number i. PB-i means practicable pubshback number i
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Figure 9. Net contribution to NPV for each pushback in the original and practicable
pushbacks. (a) KD model, (b) Marvin model, (c) D3 model

The variations between the undiscounted values are very small (from 0.05% to 0.31%). As
expected, the net present values for practicable designs are lower than for the original pits
(-1.54% to -5.34%). However, the differences are small. These results are compatible with the
decrease of 0.5% to 7.3% in the NPV reported by Bai et al. (2018) in their experiments.

Table 6. Results of original pits and those obtained by the proposed pushback generation

Original pit Practicable pit Variation

Value Rock NPV Value Rock NPV Value Rock NPV

Instance M$ Mton M$ M$ Mton M$ % % %

KD 652.2 190.6 492.4 650.4 190.0 484.8 -0.28 -0.31 -1.54

Marvin 1426.9 527.2 1,156.5 1,426.2 528.0 1,116.0 -0.05 0.15 -3.51
D3 7,491.3 397.4 5,284.2 7,467.9 411.3 5,002.1 -0.31 3.50 -5.34

5. Conclusions

An integer linear programming model has been presented to generate ultimate pits considering
minimum width at the mine’s bottom. Large mining equipment need this minimum width to
move and operate. A smoothness property was defined to ensure that there is enough space
to move between different pit bottom zones, which is an improvement over previous attempts
to model this problem.

The proposed programming model was applied to three block models (KD, Marvin, and
D3), showing that the approach results are consistent and useful for applications. Of particular
relevance is the case D3, where differences between the original and the practicable final pits
are significant and therefore they show the interest of applying optimization to maximize the
undiscounted value of a practicable bottom. This allows obtaining a range of 0.05% to 0.31%
for the expected decrease in the original final pits’ undiscounted value. It is worth noting that
a proposed preprocessing lowers the computation time fourteen times for D3 case.

The second application of this programming model was presented to generate sequential
practicable pushbacks in minutes via a modified Lerchs and Grossman (1965) methodology.
We obtained a decrease of 1.54% to 5.34% in the NPV between the design with the original
pushbacks and the practicable one. The parametrization process to determine the revenue
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factors used as inputs in this application could be done by computing a set of nested pits
without considering a minimum mining width and then solving the mixed-integer linear pro-
gramming model proposed by Jélvez, Morales, and Askari-Nasab (2020) for this set. Their
model helps to select inside a defined set, the nested pits that balance the tonnage differences
between a fixed number of successive pushbacks. This could permit to obtain revenue factors
and tonnage targets of interest.

Some potential future works may consider using a spatial aggregation/disaggregation
heuristic approach of the type presented in Jelvez et al. (2016) to lower the computation
times of the presented ILP. A programming model able to generate production plans that
consider the minimum width studied in this article is also a desirable tool.
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Jacek RpDda, and E Vila-Echague. 2014. “Open Pit Strategic Mine Planning with Automatic Phase
Generation.” In Proc. of the Orebody Modelling and Strategic Mine Planning Symposium 2014, 147–
154. Australian Institute of Mining and Metallurgy, Melbourne.

Komatsu. 2018. “P&H 4100XPC Electrical shovel general specification.”
https://mining.komatsu/docs/default-source/product-documents/surface/electric-rope-
shovels/4100xpc-specification-sheet.pdf. Accessed: 2020-01-8.

Lamghari, Amina, Roussos Dimitrakopoulos, and Jacques A. Ferland. 2014. “A hybrid method based
on linear programming and variable neighborhood descent for scheduling production in open-pit
mines.” Journal of Global Optimization 63 (3): 555–582.

Lerchs, H., and H.C. Grossman. 1965. “Optimal design of open-pit mines.” Transactions C.I.M. 58:
47–54.

Letelier, Orlando, Daniel Espinoza, Marcos Goycoolea, Eduardo Moreno, and Gonzalo Muñoz. 2020.
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