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ABSTRACT 

The open pit block scheduling problem is very important in mine planning. It consists of getting 

an extraction sequence that maximizes the net present value of the extracted blocks of an open 

pit, subject to various constraints, such as slope angles and upper and lower limits resource 

consumption, for instance, transportation and processing. Since 1960s it has been known that 

this problem can be modelled using mixed integer programming. Unfortunately, a deposit may 

consist of several thousand and up to millions of blocks, therefore, the mathematical 

optimization approach requires a very large number of variables, making it quite difficult to 

solve and, even more, requiring a lot of computation time only to find feasible solutions. 

This paper deals with this last problem: how to find good feasible solutions, i.e., block 

scheduling with a high net present value. With this aim, we have proposed and implemented 

some heuristic methods based upon the reduction of variables by means of an incremental 

approach and block aggregation. All the algorithms and instances are shared among the 

heuristics, so comparison in terms of performance is provided.  

The heuristics that we implement in this paper to solve the open pit block scheduling problem 

were applied to different instances, from 62,000 blocks to 1,680,000 blocks, considering 12 

time-periods. The experimental results obtained show that the algorithms are very promising for 

applying these techniques to large scale models, which is part of our future work.  
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INTRODUCTION 

Mine planning is the discipline of mine engineering that transforms the geological resource into 

the best productive offer, subject to the strategic goals delineated by the shareholders and the 

owners of the business (Rubio, 2006). Having an orebody, a mining project must define the 

exploitation method (open pit or underground), the time when it will be exploited and how to 

use the available resources in order to obtain the major benefit for the project. The mine 

planning must connect appropriately all the variables that affect the mineral exploitation with 

the design of the extraction, such as resources, teams and people, answering what means are 

needed to know how, how much and when to extract the mineral, defining this way the mine 

plan. The productive promise generated in this plan is expressed by means of a production plan 

and supported by a production scheduling, which determines what portions of the mine will be 

extracted and which of them will be processed, specifying the time period in which every task 

will be carried out. In order to generate a production plan, the ore body is discretized in three-

dimensional blocks, each of them has attributes as spatial coordinates, size, density and laws of 

different minerals, forming a block model developed by geologists and geostatisticians based on 

drillings. The importance of the stored data in this model is huge, since from them the costs and 

the expected profits are estimated, both being fundamental elements in the elaboration of the 

mine plan. The planning horizon, that is, the total time during which the mine will be exploited, 

is also discretized in time periods, which can vary from days up to weeks in short term 

planning; months or quarters in medium term planning and years in long term planning. 

Considering the above mentioned, we can say in a general way that the open pit block 

scheduling problem consists of determining which blocks should be extracted, when they 

should be extracted and where they should be sent later, whether it is a processing plant or a 

waste dump. This problem can be formulated using integer linear programming techniques and 

its solution is key for the profitable operation of the mine, since it represents a discrete 

production plan in the time that it optimizes certain criterion of interest, either maximizing 

economic benefits or mineral production, either minimizing the exploitation costs, etc., subject 

to spatial precedence and resources consumption constraints. This problem can be extremely 

difficult to solve, due to the fact that a mine can have thousands or even millions of blocks and 

the planning horizon can reach ten periods or more, which implies that the resultant model can 

reach several millions of variables and constraints. Then, as the long-term models are so 

enormous, the cut-off grade or the destination where the blocks are sent is predetermined, with 

which an important number of variables is eliminated in the optimization model, allowing the 

problem to be more treatable. Also, we assume that the blocks are processed in the same time 

period in which are extracted from de mine (that is, we do not allow to stock material for future 

processing): this case will be address in this article. 

Due to the previous complications, numerous heuristic methods have been developed to 

generate solutions, in general suboptimal for the open pit block scheduling problem. In 

particular, this work develop heuristic based on aggregation in order to obtain good feasible 

solutions for the problem, that is, a discrete production plan in time that seeks to maximize the 

net present value (NPV) of the extracted blocks. 

In order to generate the different instances, we use the software BOS2M (Blending 

Optimization Sequencing and Scheduling Multi-destination), which implements a mathematical 

model using mixed integer programming as part of Delphos Mine Planning Laboratory research 
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activities. The model maximizes the ore production value by computing an extraction sequence 

that considers stock, accessibility, blending and capacity constraints. 

Review of literature 

In 1965 Lerchs and Grossman presented the final pit problem (to define what portion of blocks 

contains the maximum economic benefit) and developed an algorithm to solve it. An important 

achievement in the block scheduling problem formulation is due Thys B. Johnson (1968), who 

presented the problem under precedence, capacities and blending constraints (the last ones 

given by ranges of the processed ore grade), by means of a multidestination and multiperiod 

approach, this is, the optimization model decides what blocks to extract, what process to apply 

and when to do it. Our work considers a simplified version of this model, in which there is only 

two destinations (plant and waste dump) and there are not blending constraints. 

 In this literature survey, we will focus on block aggregation techniques, which reduce the size 

of the problem through the block aggregation with similar properties in larger units called 

macroblocks. Zhang (2006) uses genetic algorithms combined with a block aggregation 

technique based upon topological sort to reduce a number of variables in the model. Ramazan 

(2007) works on a model with fixed cut-off grades, upper and lower bound for processing and 

blending, but only upper bound in capacity. They aggregate blocks into fundamental-trees that 

have certain mathematical properties (like having a positive value, respecting slope constraints 

and being minimal in some sense) and present a case study of about 12,000 blocks that are 

aggregated into 1,600 fundamental trees that are scheduled over 4 time periods, with an overall 

solution time of 30 minutes. Boland et al (2009) use a different technique to approach the 

problem by considering that blocks belong to a certain and unique bin, where the number of 

bins is smaller than the number of blocks. The extraction of individual blocks is controlled with 

continuous variables, but binary variables are used at the bin level to impose slope constraints. 

Using this approach, they are able to solve instances up to 96,000 blocks on 25 time-periods in a 

few hundred seconds, using as a stopping criterion the difference between optimal values for 

the linear relaxations of their formulation and the original problem. Tabesh and Askari-Nasab 

(2011) present an algorithm that aggregates blocks into mining units and use Tabu Search to 

calibrate the number of final units. The resulting problem is then solved using standard mixed 

integer programming algorithm; the aggregation technique is interesting, because it is based 

upon a similarity index that considers attributes like rock type, ore grades and the distance 

between the blocks; the Tabu Search procedure is then used to further aggregate the blocks, 

while trying to balance the loss of selectivity due to this. The procedure is applied on 5 different 

instances, which show a variety of results whether improvements on the objective (NPV) or 

computation time are not consistent, thus the authors indicate that further research is required.  

Formulation 

Currently, the process of long term planning is performed using the nested pits methodology of 

Lerchs and Grossman (1965), indeed, the most specialized commercial software are based on 

this method; however, they are not completely automatics and do not consider time in its 

formulation neither capacity aspects, consuming hand calculation from mining engineer, based 

upon trial and error. Next, we will see how to add this information to the model. 

Let   be the set of all blocks and   | |; the elements of   will be denoted as    . Similarly, 

we consider      time-periods and denote individual time-periods as       
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           where   is called the time horizon or planning horizon. The profit perceived if 

block     is processed at time-period              is      , where   represents the discount 

factor (         ), where    is usually 10% in mining projects), and    is the net value 

obtained from processing the block  . Slope constraints are modeled as precedence constraints 

and encoded as a set of arcs      , so     )    means that block   has to be extracted 

before block  . We say, in this case, that block   is a predecessor of block  , which in turn is a 

successor of  . Also, we define a set of resources   (for instance, transporting and processing, 

given by trucks and crushers capacities, respectively), and for each block     and resource 

   , the quantity       of resource   that is used when block   is extracted or processed. 

Finally, for each time-period  , lower and upper bounds on the consumption of resource   are 

given by the quantities    
         and    

        , respectively. We define the 

following variables, for each        :  

    {
                                                                                                      
                                                                                                                                        

 

According to previous definition, we introduce the following auxiliary variables for any    .  

     {
                                                                                              
                                                                                      

 

The idea is to know exactly the time-period in that block   is extracted. Considering all the 

above mentioned, we can formulate the open pit block scheduling problem as follow: 
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Expression (1) presents the goal function, which is the discounted value of extracted blocks 

over the time horizon  . It turns, (2) corresponds to the precedence constraints given by the 

slope angle and (3) estates that blocks can be extracted only once. Moreover, (4) and (5) limit 

the maximum and minimum resource consumption in each time period, respectively. Finally, 

(6) establishes that all variables assume binary values.  

The relation among the final pit problem, the scheduling problem and the Johnson model that 

considers the multidestination option is presented in Figure 1. It is possible to see, on one hand, 

that the Johnson model is more general than the one we consider in this paper, since the 

optimization model decides what to do with the mined blocks, besides considering the blending 
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constraints; instead our model considers that the destination of each block is known in advance 

and it does not consider blending constraints. On the other hand, our model is more general than 

Lerchs and Grossman model, since the latter does not consider time in its formulation neither 

the capacity constraints for each resource. 

As mentioned above, to solve the open pit block scheduling problem in real instances is very 

difficult, due to the enormous quantity of variables and constraints. The strategy for solving the 

integer programming formulation using standard implementation available in the optimization 

solver is based upon the Branch & Bound algorithm, which has an enumerative approach. 

Therefore, numerous heuristics have been developed to generate feasible solutions to the 

OPBSP, as we detail the next section. 

 

Figure 1 - Relation among final pit problem, OPBSP and Johnson´s model.  

METHODOLOGY 

The original block model BM1 has blocks of 30x30x30 cubic meters, but we use the same 

blocks to produce additional models with larger number of blocks by dividing the original 

blocks into blocks of 15x15x15 (BM2) and 10x10x10 (BM3). Each piece has economic values 

and tonnages that are proportional to their size. 

Table 1 – Block model, precedence and integer problem size for different instances. 

Block model Block  size # Blocks # Prec. arcs # Variables 

BM1 30x30x30      62,220 274,300 746,640 

BM2 15x15x15    497,760 2,353,494 5,973,120 

BM3 10x10x10 1,679,940 7,856,462 20,159,280 

It is possible to reduce the block model calculating the final pit as preprocessing (Caccetta and 

Hill, 2003) proved that it suffices to consider the blocks inside the final pit limits. This result 
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allows us to reduce the block model that needs to be considered). There are 12 time periods 

(years) and a discount rate d      applies. We consider two types of resources: mining 

(transported), maximum 70,000 tons per day; and processing, maximum 30,000 tons per day.  

In order to run the different heuristics we use the BOS2M tool, by assuming that the blocks are 

processed in the same time period in which they are extracted from the mine (that is, we do not 

allow to stock material for future processing). Our model incorporates a fixed cut-off grade (as 

typical long term models), which implies that if a block contains sufficiently high ore content, it 

is always processed; otherwise, it is never processed. Therefore, the decision of the block 

destination is done beforehand. Finally, we consider a slope angle of 45° at two levels. 

Heuristics 

In this section we introduce the heuristics proposed for solving the open-pit block scheduling 

problem. We assume that OPBSP cannot be solved optimally in any of these cases. 

Incremental heuristic 

 This heuristic proposes to solve the problem incrementally, i.e., it takes fewer time periods 

(which we call window time), solves and removes the scheduled blocks in this window time; 

then it repeats this process to the remaining blocks and time periods, adjusting the constraints 

accordingly and moving the window time until to complete the horizon planning. The simplest 

example of this is taking just one time period as our window time and solving repeatedly. The 

Figure 2 shows the procedure to     and a window time equal to one: in the first time period 

it selects the blocks to be extracted   , then remove these blocks and repeat this procedure to 

the second period, obtaining   . Finally, the heuristic solves for the ultimate time period. 

 

Figure 2 – Example of the incremental heuristic for     and window time equal to one.   
  

represents the maximum resource consumption in time period t. 

 

Block aggregation heuristic 
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This heuristic reduces the number of blocks considered in the optimization process. For this, 

blocks are aggregated into larger units, several times if necessary, until the problem can be 

solved (either optimally or by using another heuristic). The solution at the aggregated level is 

then used as a guide to set variables and generate solutions for the original blocks. An 

illustration of this heuristic can be found in Figure 3 in which each individual block in   is 

reblocked into a big block containing exactly 9 of them. This means that, while the original 

block model has 315 blocks, the reblocked model contains only 35 blocks. Then (a) the problem 

is solved on these 35 blocks and (b) we select blocks that are at the interior part of each period 

(grey blocks). (c) The original blocks corresponding to these aggregated blocks are removed 

from the original model, the capacities are updated and the problem is solved for the remaining 

blocks. (d) Finally, all blocks are scheduled by mixing the solutions 

Note that reblocking procedure may be used several times depending on whether it was possible 

(or not) to solve the corresponding instance. In this case we propose to use the heuristic 

recursively, which leads to two phases in the algorithm: The first phase (forward) in which we 

try to solve the original problem and reblock on failure until some instance is solved; and the 

second phase (backward) in which we use the solution for reblocked problem to fix variables 

and solve this instance with smaller blocks, repeating (if necessary) until it finds a feasible 

solution to the original problem. 

 

 

Figure 3 – Example of the block aggregation heuristic. (a) Aggregated block model is  

constructed and the scheduling problem is solved. (b) Inner blocks have their extraction time 

period fixed. (c) Border blocks are left for solving at the original scale. (d) Final solution is 

constructed. 

RESULTS AND DISCUSSION 

In this section we present and discuss the results obtained in the numerical experiments by 

using the heuristics described above. We present the results for different instances in the Table 
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2, which has one column per heuristic and for each we report: total execution time (in seconds) 

and solution value (in millions of US dollars). The notation for the heuristics is the following: 

 IP: Corresponds to run the optimization solver on the monolithic problem (this is, not using 

a heuristic at all). 

 LP: Is the result of solving the linear relaxation of the problem, which does not produce an 

integer feasible solution, but is useful for reference. A very efficient algorithm to solve it 

can be found in Bienstock and Zuckerberg (2010). 

 HInc: Corresponds to the incremental heuristic.  

 HReb/HInc: Represents the block aggregation heuristic when using HInc as the algorithm 

for solving the instances in the backward and forward phases.  

In all heuristics, we run the algorithms with only one time period per iteration (length time 

window equal to one). The time rows consider the time required for reblocking (case HReb) 

and calculating precedences, which is shorter than nine seconds for the larger instance. The 

notation   represents that it is not possible solve the monolithic problem directly. We do not 

report the execution time of LP because is not important for our results, but the solution value is 

given for comparison purpose 

Table 2 – Numerical results per heuristic for different block sizes 

 

Block model IP LP HInc HReb/HInc 

BM1 Ex. time [s]   - 115 115 

Sol.value 

[MMUS$] 

- 1,246 1,126 1,126 

BM2 Ex. time [s]   - 12,554 649 

 Sol.value 

[MMUS$] 

- 1,246 1,129 1,181 

BM3 Ex. time [s]   -        11,954 

 Sol.value 

[MMUS$] 

- 1,246 - 1,182 

 

The LP relaxation value provides an estimate of the optimal value of the problem, and 

therefore, enables us to estimate the gap of the found solution using HReb/HInc (about 5.13 % 

in the larger case).  However, there is less accuracy in the aggregated case (BM1) with all 

heuristic, because the optimality gap was up to 9%. This is explained because some decisions 

lose their freedom in the aggregated block model. Optimal values across heuristics are 
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consistent, which was expected thus validating the results in terms of the implementation. 

Among the tested heuristics, HReb seems to be the more promising, because it is able to 

produce solutions for all instances. Finally, we present the pits obtained by using HReb/HInc 

(see Figure 4), because it had the best performance. In them, we can see the geometry of the 

pits, which are very similar, validating our approach, in the sense that block aggregation can be 

used to derive solutions to the larger models.  

 

 

Figure 4 – Pits obtained through HReb/HInc for all block models. 

BM1 (upper left), BM2 (upper right) and BM3 (lower) 

CONCLUSION 

We have presented a number of heuristics to tackle the open-pit block scheduling problem that 

approaches the problem by reducing the size of the binary linear formulation. The main result 

of the heuristics is that we moved from a scenario in which using the standard approach 

produced no feasible solutions due to the size of the problem, to one in which we are able to 

produce solutions for a number of different instances, within reasonable times and optimality 

gap.  

An interesting property of the heuristics presented is that they can be easily combined with 

other techniques in order to further improve the efficiency of them, for instance, toposort 

heuristic developed by Chicoisne et a. (2012) or sliding time window heuristic developed by 

Cullenbine et al (2011), in the forward and/or backward phases of block aggregation heuristic. 

There are several possible extensions for the heuristics, like using more than one time-period at 
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each iteration of the incremental heuristic and using others heuristics methods in forward and 

backward phases in HReb, as mentioned recently. We expect to improve this in the near future. 

Extended comparison with other results in the bibliography is possible, but it is difficult 

because, even if the same block model is used, it is not always clear that the parameters of the 

model, like overall capacity or number of periods, coincide.  
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