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In open pit mining, ore and waste are hauled outside of the excavation area by trucks that
move along a system of ramps. The design of these ramps must be carefully addressed
because they have to comply with geomechanical constraints to ensure the stability of the
pit walls, provide access to the different levels and phases, but also maximise the value of
the extracted ore and reduce the extraction of waste.

Because an optimisation approach able to deal with the design of the full ramp system
seems to be out of reach at the moment, this paper addresses the problem of designing one
ramp providing access to a single pushback, which has been determined beforehand. The
optimisation objective is therefore to find a ramp that gives access to one given potential
volume, while minimising its impact on the economic value of the volume.

Two versions of the problem are formalised. One version allows the extraction of ore and
waste only if this extraction is necessary for the ramp system. This version somehow
minimises the intrinsic value of the ramp system. In the second version, it is possible to
extract more than is needed by the ramp system. For instance, this takes into account the
possibility of attaining ore on the wall opposite to the ramp as soon as the ramp reaches its
level.

In the setting mentioned above, the contribution of this work is three-fold. First, the
computational complexity of the two different versions of the problem is presented and
discussed; in particular, they are shown to be NP-hard. Second, compact integer programs
modelling these two versions are proposed. Third, an efficient GRASP algorithm able to
cope with the large instances of the problem is proposed. To assess the proposed
approaches, the models and algorithms are applied to real instances with an off-the-shelf
solver, illustrating and discussing their potential and relevance for the two versions of the
problem. They are also compared with other approaches from the literature in terms of
value and resulting designs.

INTRODUCTION

Strategic mine planning is a key step in the conception of an operation that largely determines the
economic value of a mining project. One of the key aspects of strategic planning is the determination of
the mine design.

In the case of open-pit mining, mine design starts with reference pushbacks that are obtained by the
application of optimisation models, and algorithms that look to maximise economic value. Because
these methods rely on the block model for their computation, the reference pushbacks that they produce
as output are discrete, i.e., they are sets of blocks. Moreover, in general, the only design parameter that
these models and algorithms consider is the global slope angle. In particular, they do not take into
account the space required for equipment to operate or move between levels and sectors of the mine,
ramp parameters (like width or decline), inter-ramp angles, bench width, etc.
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In fact, despite its significant relevance for the value of a project, the process of designing an open-pit
mine from the reference pushbacks is mostly manual; there are neither algorithmic or mathematical
models to solve this problem, nor standardised methodology based on numerical approaches to address
it. On the contrary, the design of an open-pit mine is mostly an iterative, trial and error, process where
the planner utilises specialised computer-aided design software to generate a feasible design while
trying to follow the reference pushbacks as closely as possible. Consequently, the overall procedure can
take a long time and its results depend substantially on the expertise of the user.

The need to count on optimisation methods to support the design of mines has been acknowledged by
several authors, who have addressed the issue in different ways.

The question of generating discrete pushbacks with additional geometrical properties to account for
space for the operation of equipment has been addressed by (Bai ef al. 2018), who propose a set of “nice
geometrical properties” (continuity, smoothness) and geometric operators that act on the reference
pushback to look for these properties. (Tabesh, Mieth, and Askari-Nasab, 2014) developed a
mathematical model to generate pushbacks. They combined the model with a heuristic approach, and
post-processing techniques to obtain practicable forms for the pits. Finally, (Loor and Morales 2020)
proposed a genetic algorithm approach to generate nested pits with operational bottom space, and used
it to generate real designs, which compare favourably to manual ones in terms of net present value.

In underground mining, (Brazil, Thomas, and Weng, 2005) and (Brazil and Thomas, 2007) address the
problem by assimilating the access ramp to a curve consisting of segments and circumference sections,
and optimise its length, subject to a fixed curvature and gradient, given starting and end points, and
zones that the ramp cannot go through. Based on these developments, (Yardimci and Karpuz, 2017)
added minimum curvature constraints and applied a genetic algorithm to minimise the overall
underground ramp’s cost.

In open-pit mining, the ramp optimisation has not been studied as much as in underground mining.
(Yarmuch et al. 2020) address the problem of ramp design inside and outside the pit, focusing on the
length of the ramp, which is associated with transportation costs. For this, outside the pit, they model
the problem as a shortest-path problem, while for the ramp inside the pit they propose a mathematical
program and develop a heuristic to solve it. They apply their approach in a mine operation and show
that their solutions compare favourably with regards to a manual design.

The work that is closer to the one proposed here is by (Morales, Nancel-Penard, and Parra 2017). Taking
a reference discrete pushback as input that does not have enough space for a ramp, their approach
produces via integer linear programming (ILP) a new discrete pushback near the reference one, but this
time with space for the ramp. Moreover, their approach aims at maximising the economic value, which
is more general than minimising transportation costs. This model was then used in a paper by (Nancel-
Penard et al. 2019), where it was applied in a case study to show that the output can be used as a guide
to generate designs which compare well against manual ones.

In this paper, the same problem is addressed, i.e., finding a discrete pushback with space for the design
of ramps, such that the resulting pushback is close to a reference one and it contains a maximum value.
However, the focus here is on different aspects. First, two different versions of the problem are
presented (each with a distinct mathematical formulation). After a proof of its NP-hardness (which
means that most likely there is no polynomial algorithm to find an optimal solution), a greedy
randomised adaptive search procedure (GRASP) is proposed to find solutions to the problem. Next, the
algorithm is applied in five instances, based on the Marvin block model; the solutions found using this
approach generate pits which are very close in value to the original one.

STATEMENT OF THE MINING PROBLEM
In this paper, it is assumed that the reference pushback has already been determined. The question

under study is the trajectory of the ramp through the set of blocks of the open mine that do not belong
to the pushback. The goal is to determine a ramp of maximal value, that gives access to every level of
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the pushback, and that satisfies geomechanical constraints, e.g., that the slope of the ramp is not too
high or that the ramp is large enough. The value of the ramp is the sum of the values of the blocks
extracted for its construction. This value is the main criterion: it does not include the value of the
reference pushback determined beforehand (and whose value is much bigger by several orders of
magnitude).

The main decision of the mathematical problem is to determine, for each level, one block through which
the ramp goes. These blocks are called interpolation blocks. The selection of the interpolation blocks
must consider the design parameters of the pit. In the modelling, the overall slope angle, the ramp’s
width and decline, and the inter-ramp angle are considered. (All these values may change between
zones of the orebody.) These parameters are an input to the problem; however, they are not considered
explicitly in the formulation, but rather defined by certain relations between the blocks, which are now
briefly described. (See Section 3 for detailed definitions.)

e The interpolation blocks define a path that goes from the surface, down to the bottom of the pit.
This is used to model the decline of the ramp by requiring that two consecutive interpolation
blocks must be at a sufficient distance, so that the segment between the interpolation blocks has
a decline within a given range.

e The overall wall slope angle is used to determine a set of blocks that need to be extracted to
ensure the wall stability. This is modelled using precedences between blocks, as in the case of
other standard problems (for example, the ultimate pit), i.e., for each extracted block there is a
set of predecessors that need to be extracted.

e Two consecutive interpolation blocks define a set of blocks that must be extracted when they
are selected to create the ramp; these are the blocks between them. Moreover, the set of these
blocks has a certain width that represents the ramp width. In this sense, it is assumed that the
interpolation blocks always correspond to the part of the ramp that is next to the pit wall (i.e.,
that belong to the outer part of the ramp). This is modelled also using precedences, but this time
between pairs of interpolation blocks and blocks. That is, for any pair (b, b’) of consecutive
interpolation blocks, there is a set of predecessors. Furthermore, because the ramp may be far
from the inner part of the reference pit, the predecessors of a pair (b,b") may consider extra
blocks to make sure that the ramp does not depart from the pit wall.

e Finally, if a pair (b, b") of interpolation blocks is chosen, the blocks located just below them
cannot be extracted. This limits the places where the ramp can go in lower levels, thus ensuring
that the ramp is not floating.

Some of the concepts described above are depicted in Figure 1, where a section view of a block model
is presented. The blocks are represented by squares, and the set V' that contains the boundary of the pit
to be calculated is delineated. An interpolation block is painted in black. The sets of blocks to be
extracted due to this are coloured in light blue. This set is composed of blocks located above the black
block, which must be extracted due to slope precedences, and blocks located at the same level, which
have to be extracted to make space for the ramp and the pit itself. Finally, some blocks are coloured in
light green to indicate that they cannot be removed, because they became the floor of the ramp.

R
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Figure 1. Side view of a block model (frame). On the left, in white, blocks not considered in the optimisation
problem, the boundary (orange) and blocks that cannot be extracted in grey. On the right, two interpolation
blocks (black), blocks that must be removed (light blue) and blocks that must stay (light green).
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MATHEMATICAL FORMALISATION

As indicated before, two versions of the problem are considered. In both versions there are two directed
graphs (also called digraphs). A first digraph, denoted by D; = (V,P), is used to represent the
precedence constraints: (b, b") € P means that to extract block b it is necessary to first extract block b’. A
second digraph, denoted by D, = (V',R), with V' =V U {s,t}, is used to represent the selection of
interpolation blocks, ie., (b,b") € R means that it is possible to construct a ramp from b to b’ while
keeping its decline within an acceptable range.

Givenanarca = (b,b") € R, two sets are considered: L, C V is the set of blocks that need to be extracted
if the segment between b and b’ is part of the ramp, and S, S V is the set of blocks that must remain
unextracted if the segment between b and b' is part of the ramp. A valid s — t path is an s — ¢ path p in
D, such that there exists a subset X(p) € V satisfying:

e S,NX(p)=0foralla € arcs(p).
e L,C X(p)foralla € arcs(p).
e Forallb € X(p) and (b, b") € R, the inclusion b’ € X(p) holds.

The set X(p) corresponds to the set of blocks that must be extracted for building the ramp encoded by
the path p.

Each block b € V has a value, denoted by r;,, which can be positive or negative. The value of a valid s —
t path p is equal to X,cx(;) b The goal is to determine an s — t valid path of maximum value.

In the first version of the problem, the set X(p) is moreover constrained to be the minimal one for
inclusion, i.e., the smallest pit defined by the path p is sought (it is easy to check that such a minimal set
exists).

In the second version, each block has a level. The set X (p) is allowed to contain every block situated at a
level reached by the ramp, but when a block is extracted, there must be a horizontal access to that block
from the ramp.

COMPUTATIONAL COMPLEXITY

The main message of this section is that, with the current modelling, the problem is “NP-hard,” namely
that there is no hope of finding an algorithm to optimally solve the problem, and always running with
short computing times. This result is expressed as a formal mathematical statement, because it helps
understand exactly under which conditions the claimed limitation holds, and what could be done to get
rid of them. For instance, the question whether it remains NP-hard for a modelling, taking the geometric
aspect of the problem more closely into account remains open.

Moreover, a complete proof of this result is provided. This is done for the sake of completeness; the
proof has absolutely no practical interest and cannot lead to any improvement of the methods used to
solve the problem.

Proposition 1. The problem (in its two versions) is NP-hard, even if every set L, has a block not shared with any
other Ly, (a # a').

Proof. The proof consists in reducing Set Cover to it. Given a ground set U, a collection F of subsets of
U, and an integer k, the problem Set Cover consists of deciding whether there exists F' € F with |F'| =
kand UF' = U.

Define then D; and D, as follows. Let V be {1,2,...,.k + 1} U {vg:E € F}U U. Set P = {(vg,u):E€F,u e
E}.

368



For each b € {1,2, ..., k}, put in R as many parallel arcs from b to b + 1 that there are subsets in F, and
each subset in F is assigned to a distinct arc between b and b + 1. Note that each subset is eventually
assigned to k arcs: one from 1 to 2, one from 2 to 3, and so on. For each a € R with b and b+ 1 as
endpoints, set S, = {b, b+ 1} and L, = {vg}, with £ being the subset in F assigned to a. Finally, setr, =
1if b € U and 1, = 0 otherwise.

There is no difference between the two versions of the problem for this specific instance. It is then
straightforward to check that there exists F' € F with |F'| = k and UF’ = U if, and only if there is a valid
path with a value at least U.

MATHEMATICAL PROGRAMS

A mathematical formulation for each version of the problem is now given. It takes the form of an ILP,
with a slight difference between the two versions. The way to solve it is also briefly discussed. For the
first version of the problem, it is an exact modelling: solutions of the problem, and of the integer linear
program coincide. For the second version, it is a heuristic modelling: the solutions of the integer linear
programs form a subset of the solutions of the problem.

Integer linear program: common part.
Define two sets of variables: binary variables x;, defined for eachb € V, and binary variables y,, defined
for each a € R. The definitions are the following:

Q) x;, = 1ifblock b is extracted A 0 otherwise.

@) Ya=(p»") = lifaramp is constructed from b to b’ A 0 if not.

The objective function consists of maximising the total value of the extracted blocks

3) w=Y nun

The constraints are
@) Yatxp =1 Va€ER,bES,
©®) Ya < % Va€RbEL,
© Xp S Xpr v(b,b") EP
@ Z Yorv) = Z Y(b.br) vbeV

br:(bt,b)ER br:(b,br)ER

®) (Z Vispy =1
b:(sb)eER
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Constraint (4) prohibits extraction of blocks that must stay because of the ramp. Constraint (5) imposes
extraction of blocks required by the ramp. Constraint (6) forces the extraction of blocks due to
precedence. Constraint (7) is a way to make the y(;, ;) encode a path and constraint (8) makes the path
start at s. (Actually, these constraints impose just that the y(, ;) encode an s —t path together with
circuits, but the fact that each arc a € R corresponds to a level change means that there will eventually
be no circuit.) Note that a constraint similar to constraint (8) for t is not necessary since the other
constraints allow neither s, nor any b to be the endpoint of the path.

These variables, constraints, and objective function are common to the two versions of the problem.
Each version has a specific constraint, which is now introduced.

First version
In the first version of the problem, where the set X (p) has to be minimal, the following constraint is also
needed.

) . Z YaVb €V

a:beLg
This constraint means that if a block is extracted, this is due to the ramp going “below” it.

Second version
In the second version, where the set X (p) does not have to be minimal, the following constraint is added.

) Xp < YaVh €V

a:aendsatlevelofb

This constraint means that a block can be extracted as soon as the ramp reaches its level. In order to
ensure the existence of a horizontal access to every extracted block from the ramp, the set P also contains
arcs oriented to the pit (determined by breadth-first-search, which ensures that the extracted blocks are
on the shortest paths to the pit). The resolution of the ILP will then create for each extracted block a
‘path’ of extracted blocks to the pit.

This is the heuristic part: the second version only requires the existence of an access from any extracted
block to the pit, and there might be many ways to satisfy this requirement. Yet, the trick of adding arcs
oriented to the pit in P makes the extraction of a block by the ILP lead to the ‘automatic’ extraction of a
predetermined sequence of blocks to the pit, without any freedom on the way to select these blocks.

SOLUTION APPROACH

A natural way to solve the ILP is with the help of an off-the-shelf solver. This is the first ILP-based
approach.

Unfortunately, the problem quickly becomes very large, and the resolution is time-consuming for any
solver. A way to shorten the computation time consists of the following heuristics run beforehand:

e Divide the circumference of the reduced pit into m connected parts of about the same length
(where m is a parameter of the method).

e Select in each part the most profitable block.

® Solve the ILP with a set R in which the arcs leaving s have been reduced to those of the form
(s, b), with b selected at the previous step. (The vertex s has thus an outdegree equal to m.)

This second ILP-based approach is called the restricted one.

Another approach proposed in this paper is a simple and natural greedy procedure. It progressively
builds the ramp by adding the arcs in a greedy manner: it starts with the most valuable arc in R that
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leaves s; an iteration extends the current partial ramp by selecting the most valuable arc in R from the
current endpoint; ties are broken arbitrarily. The value of an arc is the value of the extra blocks that have
to be extracted because of its addition. For both versions, the models of Section 5 are used to determine
which blocks to extract in function of the chosen arcs. In particular, an ILP solver is used at each iteration
to determine which arc to choose.

The greedy approach is improved by randomising some steps. More precisely, the standard greedy
randomised adaptive search procedure (GRASP) is followed. Feo and Resende introduced and
developed this metaheuristic in the late 80s and developed it in the 90s (Feo and Rosende 1989; Feo and
Rosende 1995). It has been used in many combinatorial problems. The method is an extension of the
greedy algorithm in which a solution to the problem is constructed iteratively, by adding ‘elements’ or
‘pieces’ to the current candidate, until a solution is formed. To select the next element to be added, a
value or ranking function is utilised. The difference between the greedy algorithm and GRASP is that
in the former approach, the element with the highest rank is added in each iteration, while, in the latter,
this element is chosen randomly from a list of the elements with highest rank.

Using GRASP in mine planning optimisation is not new. For example, (Riff, Otto, and Bonnaire 2009)
applied GRASP to solve a scheduling problem in underground mining extracted by a caving method.

EXPERIMENTAL RESULTS

Instances and compared methods

The data sets utilised for numerical experiments are based in Marvin, which is a commonly known
block model from the literature. From this block model, five different instances are considered. They are
described in Table 1. Three instances require the ramp to have a width of two blocks (their name is in
the form of M30-XX). Two instances require the ramp to have a width of one block (their name is in the
form of M15-XX). The -XX’ indicates how many levels are considered.

The precedence constraints for the first version of the problem are only the vertical ones. For the second
version, ‘horizontal’ constraints are added to these precedence constraints as explained in Section 5: for
each block b, a shortest horizontal path to the pit is computed; all blocks on this shortest path have to
be extracted when b is extracted. It models the fact that, if a block that is not near the ramp has to be
extracted, then it has to be reached from the pit. For each version of the problem, the four methods
described in Section 6 are experimented with (two based on ILP and two greedy algorithms). For the
restricted ILP-approach, m = 3 is set (i.e., the circumference of the pit is subdivided into three connected
parts of almost equal length), but for the instances Marvin-30, only two parts contain valid starting
blocks. For GRASP, in a procedure generating a valid s — t path, each iteration consists of selecting
uniformly, at random, among the three best arcs; the procedure has been repeated 50 times; only the
best path (in terms of value) is kept.

Gurobi v9.0.0 has been used for the resolution of the ILPs (Gurobi 2018). All experiments have been
performed on a computer with 32 GiB of RAM and 4 cores at 1.80 GHz and Linux Ubuntu 18.04.3 LTS,
64-bit operating system. There is a time limit of 7,200 s for the experiments.

Table 1. Summary of numerical instances

ID of # . # Blocks in
Instance | Benches IR reduced pit
M30-05 5 1,314 3,032
M30-10 10 2,392 3,594
M30-15 15 3,063 3,596
M15-10 10 5,083 33,392
M15-20 20 9,364 53,168
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Numerical Results
The computational results are gathered in Tables 2 to 4.

Tables 2 and 3 summarise the results related to the value of the ramps and the computation time
required to find the respective solutions, for the first and second versions of the model. The first column
contains the name of the various instances on which the methods have been experimented. These
instances are described in Section 7.1. Then, there are four groups of two columns: one group for each
method ‘Greedy’, ‘GRASP’, ‘ILP’, and ‘Restricted-ILP". For each group, the left-hand column shows the
value obtained with the method and the right-hand column shows the computational time required by
the method. Regarding ‘Greedy’, almost all computation time is spent on the reading of the instances.

The true optimal value could in theory only be proved with the method ILP. A star (*) has been added
when the optimal value was obtained. Otherwise, the optimality gap is provided.

For ‘Restricted ILF, all models have been solved to optimality (but it is only a lower bound on the true
optimal value, probably close to it).

Table 4 reports the results in terms of the value of the pit. That is, it compares the value of the original
pit with the value that takes into account the ramp design. This is obtained by adding the value of the
ramp (i.e., of the blocks that need to be extracted for making space for the ramp) to the value of the
reduced pit, which is used as the reference volume.

Discussion

Tables 2 and 3 make clear that the first version of the problem is very hard to solve. Indeed, within the
computation limit of six hours, only the smallest instance could be solved up to optimality (M30-05),
and other instances have gaps around 100% or more. Moreover, when the blocks are profitable,
computing times are much smaller. The reason why ILP is so bad when blocks have negative value
remains unexplained. The restricted ILP approach is a good option when near optimal solutions are

sought.

As expected, the second version provides in general better solutions than the first version; indeed, any
solution of the first version is a solution of the second version, but this latter allows more possibilities
of removing valuable blocks. The instance M30-05 is the only exception, and this is due to the heuristic
way the existence of a “path’ of extracted blocks from any extracted block to the pit (see Section 5.3) is
taken into account. This shows that finding a more clever and more accurate way to model this
constraint could be interesting, and improve the quality of the solutions.

Overall, the heuristics perform very well, obtaining solutions that are near the optimal ones in a fraction
of the time. More importantly, Table 4 shows that the heuristics generate volumes with space for the
ramps, but with a value that is nearly the same as that when the reduced pit is used as a reference.
Indeed, except in one case, all values are within 0.013% of the value of the reduced pit. This is a very
good result when compared with the literature, which reports gaps up to 1% for Marvin and up to 10%
in other block models (Morales, Nancel-Penard, and Parra 2017).
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Table 2. Computational results for ramp design in open pit mine (first version)

Greedy GRASP ILP Restricted ILP
Instance w Time [ W Time w Time | 7 Time
(USD) ® (USD) () (USD) (s) (USD) )
M30-05 -2,352 42 -2,235 63 -2,206* | 1,871 -2,322*% 6
M30-10 -12,187,166 64 | -10,089,185 98 -9,521,431 | 3,342 | -9,135,577* | 4,402
gap=158.24%
M30-15 25,769 68 27,477 112 18,300 | 4,340 31,440* | 6,824
gap=323.69%
M15-10 -3,944 87 -2,313 129 -2,058 | 7,189 -1,965* | 5,122
gap=98.94%
M15-20 -9,438 95 -8,161 148 -14,738 | 6,928 -7,748* | 7,186
gap=145.14%
Table 3. Computational results for ramp design in open pit mine (second version)
Greedy GRASP ILP Restricted ILP
Instance il Time i Time w Time L4 Time
(USD) () (USD) (s) (USD) () (USD) ©)
M30-05 -4,955 20 -2,572 46 -2,304* 479 -2,430 3
M30-10 -523,497 41 -413,924 85 -373,603 | 7,196 -364,118 688
gap=2,667%
M30-15 40,428 47 42,923 97 44,924* 611 42,820 46
M15-10 -3,434 71 -2,276 118 -1,945 | 7,198 -1,612* 165
gap=67.29%
M15-20 -8.044 86 -7,083 125 -6,782 | 7,152 -5,607* 454
gap=85.29%
Table 4. Impact of ramp in value of the pits
Gain/Loss in Value Gain/Loss in Value
Instanc | Reduced Pit First Version (%) Second Version (%)
e Value
Greed | GRAS Rest. | Greed | GRAS Rest.
y P e Shp y P LP 1 mp
M30-05 | 123,058,769 % 5 . ; 2 g . .
0.002% | 0.002% 0.002 0.002 | 0.004% | 0.002% 0.002 0.002
% % % %
M30-10 341,084,968 - - - - - - - -
3.573% | 2.958% 2792 2678 | 0.153% | 0.121% 0.110 0.107
% % % %
M30-15 341,838,517 | 0.008% | 0.008% 0.005 0.009 | 0.012% | 0.013% 0.013 0.013
% % % %
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M15-10 189,357,415

0.002% | 0.001% | 0.001 | 0.001 0.002% | 0.001% | 0.001 | 0.001

% % % %

M15-20 | 1,019,009,03 - - - - | 0.000% - - -
1] 0.001% | 0.001% | 0.001 | 0.001 0.001% | 0.001 | 0.001

% % % %

CONCLUSIONS

This paper addresses the strategic problem of open-pit ramp design, for which previous works have
suggested utilising an optimisation model that uses an initial pit as a reference, and finds another that
is close in volume, while containing enough space for the ramp design. Following this line of work,
mathematical formulations modelling two versions of the problem are proposed, and shown to be NP-
hard. Therefore, four different solutions approaches are proposed: an exact algorithm (with a
computation limit), a heuristic based on mathematical programming, a greedy heuristic, and a GRASP
algorithm.

In terms of computational results, the quality of the solutions obtained using an exact algorithm
emphasise the difficulty of the problem, as the feasible solutions found within a two-hour time limit
present optimality gaps of 100% or more in many cases. However, the proposed heuristics can find
solutions which are competitive in value but can be found in a fraction of the time (less than two
minutes).

In terms of the application, the results are very promising, because in almost all instances, the resulting
pit has a value with a loss in value that is smaller than 0.1% of the original pit. (In the only instance
where this is not true, the loss is about 3%, which is consistent with other results in the literature for
similar cases). These results encourage the application of the algorithm in other block models, and to
look for extensions incorporating multiple pits.
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