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Value-Optimal design of ramps in open pit mining 
 

The economic envelopes obtained by optimization techniques in open pit mining are transformed into 

operational phases that are suitable for extraction through ramp designs. This process is performed with the 

aid of specialized design software, which is still very manual, time consuming and highly dependent on the 

expertise of the planner. In this paper, we introduce a new methodology based on a mathematical model to 

automatically propose the design of ramps from the economic envelope of a pushback, with the resulting 

envelope having the maximum value. The developed model was tested against a real case scenario showing 

reasonable and useable solutions for the planner. Using this approach, a planner can evaluate several 

alternatives in a reasonable time before selecting the final design. 
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1 Introduction 
Open pit mine planning is a decision-making process that leads to a realistic and actionable plan 

to profitably extract mineral resources. Planning can be carried out for a wide range of periods from 

the very short (next shift) to the very long (life of mine) (Whittle, 2011). 

The starting point of the mine planning process is a block model in which the ore body is divided 

into regular blocks; each block with individual attributes, such as, ore grades, recoveries, and tonnages. 

The block model is economically valued and the profit is assigned to each block (Bley et al., 2010). 

This block model together with the geotechnical constraints and the long term economic parameters 

(costs and commodity prices) are the basic input for open pit strategic mine planning. 

A fundamental problem resides in determining the optimum pit limit of a mine in which the 

extraction of material will take place. The optimum pit limit of a mine is a set of blocks in the block 

model which, when extracted, yields the total maximum profit while satisfying the operational 

requirements (Cacetta & Hill, 2003). Within the ultimate pit, the deposit is divided into nested pits: 
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from the smallest pit with the highest value in terms of profit to the largest pit with the lowest profit 

value (Dagdelen, 2001) for the purpose of establishing a mining sequence. Nested pits are generated 

by varying the price of the metals being extracted (Hustrulid et al., 2013b). 

However, the ultimate pit as well as the nested pits are computed at the block level i.e. they are 

only an approximation of the actual volumes. Indeed, after obtaining the final pit and nested pits, mine 

designs are carried out. This is usually an iterative process between the geotechnical engineer and the 

mine planner (Williams et al., 2013) because mine designs must accomplish geotechnical requirements 

to ensure slope stability.  

Mine designs break the overall pit reserve into manageable planning units called phases, which 

are commonly based on the sequence determined by the nested pit, taken into consideration (Hustrulid 

et al., 2013b): 

 The probable maximum ore and waste mining rates required in a given phase. 

 The size and type of the equipment to be used. This determines the required minimum operating 

bench width. 

 Appropriate working, inter-ramp and final slope angles. 

Based on these considerations, the mine planner proceeds to design phases ensuring that ramp access 

to each active bench is provided.  

Ramps are one of the most important aspects of mine planning. Their presence should be included 

early in the mine planning process since they have a significant effect on the reserves (Hustrulid et al., 

2013a). Roads necessarily imply the addition of waste and/or reduction in the amount of ore extracted 

from the optimal pit shell, which has an impact on the economic value of the mining project.  

With a set of operational designs, including ramps, for each of the mine phases, the annual mining 

schedules based on mill feed or production requirements are determined. It may be necessary to repeat 

the design stage several times before an adequate mine plan is developed (Hustrulid et al., 2013b). 

Therefore, designing phases and building production schedules are iterative processes. 

In the optimization stage, the process to obtain the final pit shell is based on mathematical models 

and algorithms, such as, Lerchs and Grossman (1965) that attain optimal solutions for the ultimate pit 

and for the nested pits.  At this stage, the planner can work at a high level of abstraction and, therefore, 

his/her work consists of controlling specific parameters and criteria to generate the pits, because the 

mathematical framework ensures optimality of the computed pits.  
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On the other hand, the open pit operational design stage is carried out using specialized design 

software, which are tools to aid the user to make designs faster but they do not ensure the profit 

optimization. Thus, this stage is mostly a manual process in which the optimality depends on the user.  

It thus follows that the quality of the resulting solution depends on the skills, information and time 

available for the design phase. While there exist some criteria to check the quality of the design (for 

example, measuring the difference in tonnage and value of the optimal pit shell versus the operational 

pit design), there is no guarantee that the results would be optimal. In addition, the process itself is 

very slow and time consuming. 

Therefore, there are several drawbacks of the current design method. Firstly, since the task takes 

considerable time, there are few opportunities to consider different scenarios to check the robustness 

of the solutions. Secondly, even if the solution obtained satisfies the profitability, the time requirements 

make it a very specialized and expensive task. Finally, since the pushbacks are optimal in value but 

not in operational parameters, there exists a potential gap in value and tonnage between the pushbacks 

and the designed operational phases. Therefore, there is a need to evaluate the quality of the designs 

of phases.  

For these reason, a mathematical model was developed to assist the planner in finding the best 

possible ramp design. This model determines an optimal path based on operational and economic 

parameters and criteria. Due to the computational speed, the model enables the planner to test different 

design scenarios before accepting the final solution. 

The proposed mathematical model commences with a valued block model for which a pit has 

already been computed and then looks for a path (of blocks) that moves around the pit contour that 

complies with the geotechnical constraints. This model is a first step into more complex formulations 

that would consider multiple pushbacks and, in the long-term, will be the basis for models that would 

enable the automation of the entire process of strategic mine planning and open pit design. 

In this paper, the review of the geometrical components of a slope and current practices of the 

industry in mine designs is followed by the description of the model, case study and the results of the 

application of the model to a real scenario.  

1.1 Geometrical components of a slope 

The geometrical components of a slope (Fig. 1) are in direct relationship with safety conditions of 

the mine since they are associated with acceptable design criteria, which allow the slope stability to be 

achieved.  
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Fig. 1. Geometrical components of a slope 

The main geometrical components of a slope are (Hustrulid et al., 2013a): 

 Bench face angle (θ): the angle between the horizontal plane and the bench wall. In most hard 

rock open pit mines, this parameter has values ranging between 55° and 80°. 

 Bench height: the height, which typically has to adapt to the loading equipment operating in 

the mine. 

 Berm width: the distance between the toe and crest of a bench. 

 Inter-ramp angle (α): the angle between the toe of a slope where a ramp segment passes and 

the toe of a bench located immediately upwards. 

 Overall slope angle (β): the angle made with the horizontal of the line connecting the lowest 

most toe to the upper most crest. 

 Global slope height: the height projected in the vertical axis between the lowest most toe and 

the upper most crest. 

 Ramp: the road along which the trucks haul the material between a loading point and a 

destination. 

All the desired characteristics of the components are determined using geomechanical 

fundamentals, which consist of defining minimal requirements towards valid design. However, as the 

proposed mathematical model works at the block level, the focus is to achieve a good approximation 

of the inter-ramp and global slope angles as well as the haul ramp width.  

1.2 Review of current practices and related literature in mine designs 

At the mine design stage that consists of converting volumes defined at block level into operational 

ones, it is necessary to smooth the final pit contour and pushbacks. Mine designs must incorporate all 
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the geometrical components of a slope, which include hauling ramps, where trucks can access each of 

the phases to transport ore and waste to the final destinations.  

Generally, ramps´ locations are constructed based on the criteria of the mine planner in charge of 

the operational mine designs of an open pit. One of the issues faced by the mine planner, which is little 

written about in the mining literature, is gaining initial access to the ore body (Hustrulid et al., 2013a). 

Some aspects, which the mine planner must consider when realizing operational designs, are: 

 Minimum costs on a net present value basis for the transport of ore and waste throughout the 

life of mine. The preference is to use the long-life haul roads rather than short-life roads as this 

reduces overall road construction costs and operating costs (Atkinson, 1992). 

 Roads exits from the pit wall. This is dependent upon the crusher location and the dump points 

(Hustrulid et al., 2013a). 

 Optimum number of access points to the pit. More access points means more flexibility but the 

added cost could be high (Hustrulid et al., 2013a). 

 Optimum number of switchbacks. It is desirable to avoid the use of switchbacks in a pit because 

they tend to slow traffic, cause greater tire wear and various road maintenance problems 

(Hustrulid et al., 2013a). 

 Minimum traffic congestion (Atkinson, 1992). 

 Avoidance of areas where slope stability problems could occur (Atkinson, 1992). 

Therefore, the planner must deal with many criteria and considerations to generate a design, which 

means that the current practice does not necessarily maximizes NPV and minimizes operational costs 

in pit designs.  

2 Problem Statement 
The problem addressed in this article is to determine the best path to be followed by a ramp. By 

path, we mean a guidance at a block level; and by best, we mean that the difference between the block-

level solution and the designed-level solution is small. More specifically, the model that we propose 

will produce a guidance for which the overall value is maximized. 

As the described path evolves over the life of the mine and its optimal design depends on many 

parameters as well as the different phases of the mine, in this work, the evaluation is limited to one 

single pit or pushback. It starts with a block model in which block 𝑖 may belong (or not) to a given pit. 

From the borders of this pit, a certain neighborhood or range of blocks is considered. The desired path 



6 
 

is constrained to this range. This path is allowed to move inside or outside of the pit boundaries, but is 

kept relatively close to it. The pit has to comply with the following limitations: 

- The path starts at the top of the topography and ends at the bottom. 

- The path passes once per each bench; the points where the path enters/exits the bench are called 

accesses. 

- As blocks in the path are removed, some blocks in the block model must also be extracted due 

to slope considerations.  

- An inter-ramp angle 𝛼 and an overall slope angle 𝛽 are considered. 

- The ramp roads have a maximum grade. 

- The ramp has a minimum width of 𝑟 meters or a minimum of 𝑅 blocks. 

A mathematical model (Morales et al., 2017) determines the locations of the accesses to ensure 

that all of the considerations mentioned previously are taken into account to maximize the economic 

value of the removed blocks (including those in the ramps). The path being computed aims to produce 

a guidance for the design stage (Fig. 2). 

 

Fig. 2. Example of a computed path. Red blocks represent accesses. Light blue blocks are blocks in the path 

An example of a set of all blocks 𝐵, the initial pit and the set of candidate ramps are presented in Fig. 

3. This latter set is created around the profile of the initial pit; thus, the ramp may be constructed inside 

or potentially outside the pit. Therefore, the blocks outside of the set of ramp candidates are not 

considered in the optimization process. 
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(a)                                                                                                  (b) 

Fig. 3. (a) The set of all blocks 𝐵 and initial pit in gray. (b) The set of blocks candidate to be ramps. Contour of 

the whole block model is also displayed for reference 

The initial profile of the ramp set (Fig. 4a) consists of blocks b and b’, which are considered potential 

accesses to the corresponding benches, with the ramp from b to b’ approximated by the blocks in green. 

If blocks b and b’ are selected as accesses, blocks in green have to be extracted as well as those in 

yellow (due to slope constraints). The resulting profile is presented in Fig. 4b. 

 

   (a)       (b) 

Fig. 4. (a) Ramp set, blocks b and b’ selected as accesses: green blocks are in the path, yellow blocks have 
to be removed due to precedence constraints; (b) Resulting profile after ramp construction 

In this article, an explanation of a simplified version of the model to determine the best ramp of a 

minimum width of one block is presented. The general model that was used in our study is presented 

in details in (Morales et al., 2017). 

A sub-ramp path (green blocks and blocks b and b’ in Fig. 4) for a given level k as the part of the 

ramp path that contains all ramp path blocks of the level k as well as the access of level k-1, level 0 is 

the bottom of the mine. Possible sub-ramp paths that respect some design aspect (the given maximum 

grade of roads) for each level of the mine are precomputed inside a predefined pit boundary from the 

surface to the bottom of the mine. The mathematical model will select which sub-ramp paths, 

connected by accesses, should be assembled to constitute the full ramp path respecting the design 

constraints and optimizing the overall value of the extracted blocks. Each sub-ramp path respect the 

given maximum grade of roads and the full ramp obtained will also respect this design requirement.    
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The linear integer mathematical model considers two different variables. The first variable, yb, is 

the binary variable that decides if a block b is extracted or not. The second variable, 𝑥𝑘
𝑖 , corresponds 

to a binary variable that decide if the ith precomputed sub-ramp path of the level k is elected to be part 

of the ramp. The objective is to maximize the economic value of the extracted blocks. There is a 

constraint that forces all blocks of the ith precomputed sub-ramp path of level k to be extracted if  𝑥𝑘
𝑖  

value is 1. The following constraints are set within the model: 

1. For each extracted block, all the blocks inside the cone defined by the extracted block and the 

inter-ramp angle α of Fig. 1 are extracted. 

2. For each extracted block, all the blocks inside the partial cone defined by the extracted block, 

the overall slope angle β of Fig. 1, that are above a horizontal plane at the inter-ramp height 

distance of the extracted block are extracted. 

3. The existence of an elected precomputed sub-ramp path of level k+1 for each elected 

precomputed sub-ramp path of level k and the connection of those path are forced.  

4. The number of elected precomputed path by level cannot exceed one. 

5. The existence of an elected precomputed sub-ramp path of level k+1 for each extracted block 

of level k is forced. 

6. Blocks immediately below ramp blocks and blocks between the ramps and the slope cannot be 

extracted. 

It is important to note that the constraint 5 prevents the existence of an extracted pit without ramps. 

3 Case Study 

3.1 Block model and economic parameters 

The case study corresponds to a real copper deposit. Due to a confidentiality agreement, the name 

and location of this deposit cannot be disclosed.  The characteristics of the block model are as follows: 

 Regular blocks of 10 meters x 10 meters x 10 meters, 

 East-west length: 610 meters, 

 North-south length: 800 meters, 

 Depth: 280 meters. 

The economic and metallurgical parameters are: 

 Copper price of 4.41 USD/kg,  

 Mine cost of 1.8 USD/ton,  

 Processing cost of 13 USD/ton,  

 Smelter and refining cost of 1.43 USD/kg,  

 Metallurgical recovery of 85%. 
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3.2 Slope angles and geometrical components of a slope at a block level 

The slopes´ angles considered for precedencies in the optimization model are the inter-ramp 

angles and the global slope angle. The number of ramp segments present in a profile of the slope is 

unknown. For this reason, the first step is to assume a number of ramp segments in a profile together 

with a global slope height. With these parameters, it is possible to calculate a global slope angle. The 

number of ramp segment present in a profile is illustrated in Fig. 5.  

   

Fig. 5 Final pit shell with two ramps 

Two ramp segments at the right and two ramps segments at the left are present in the profile view 

(green blocks in Fig. 5).  

A schematic draw of a pit with blocks at a global scale with the geometrical components of a slope, 

such as, ramps, inter-ramp angle, global slope angle, inter-ramp height and global height is shown in 

Fig. 6.  

 

Fig. 6. Schematic draw of a pit with blocks at a global scale with the geometrical components of a slope 

A schematic draw of a pit with blocks at an inter-ramp scale is shown in Fig. 7.  
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Fig. 7. Pit´s schematic draw with blocks at an inter-ramp scale 

Based on Fig. 6 and Fig. 7, it is possible to obtain Equation (1): 

tan 𝛽 =
𝐻

3𝑥 + 𝑁(𝑟 − 𝑟′)
 (1) 

where:  𝛽 is the overall slope angle, 𝐻 is the global slope height, 𝑁 is the number of ramps present in 

the slope, 𝑟 is the ramp’s width, 𝑟′ is the distance between the crest of the ramp and the projection of 

the inter-ramp angle from the bench below and 𝑥 is the inter-ramp length measured horizontally (Fig. 

7). 

From Fig. 7, it is also possible to obtain Equation (2): 

tan 𝛼 =
ℎ′

𝑟′
 

(2) 

where: ℎ′ is the bench height (also block height). 

By replacing Equation (2) in Equation (1), Equation (3) is obtained. This equation expresses the global 

slope angle as a function of the inter-ramp angle, the number of ramps present in a segment profile, 

the ramp’s width, the overall slope height and the bench height. 

tan 𝛽 =
𝐻

𝐻
tan 𝛼 + 𝑁 (𝑟 −

ℎ′

tan 𝛼)
 (3) 

3.3  Design steps 

The methodology for the optimization process to obtain the final pit shell with ramps as a guide to 

perform the final pit designs is shown in Fig. 8. 

The inter-ramp angle is 53°, the ramp width is 30 m and the bench height is 10 m. Using an overall 

height of 230 meters, which is the maximum depth at which the ore is located, and assuming two ramps 

present in the slope, the overall slope angle 𝛽0 is obtained as a first approximation to the optimization 
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process. With the economic parameters, a pit shell is going to be obtained. With this first pit shell, the 

optimization model for ramps generation will be used to obtain a first pit shell with ramps. 

To obtain a reasonable computing time for solving the optimization model, it is necessary to 

choose a starting point. Firstly, an economic evaluation in terms of profit, using four different starting 

points for the ramp’s access, is carried out; the evaluation with the highest profit is selected as the point 

where the ramp starts going down. Subsequently, it is possible to determine the new global slope height 

𝐻1, the number of ramps present in the slope 𝑁1 and the new overall slope angle 𝛽1 in the contour of 

the pit, as shown in Fig. 9. 

The global slope angle 𝛽1 must be calculated considering two ramps present in the slope (Fig. 9), 

in the plan view of the generated ramp, between an azimuths ranging from 0° to  𝐴𝑍1. The global slope 

angle 𝛽1′ must be calculated considering three ramps in the slope, from an azimuth between 𝐴𝑍1 

and 𝐴𝑍2. The global slope angle 𝛽1 must be calculated considering two ramps in the slope, from an 

azimuth between 𝐴𝑍2 and 360°. After determining the global angles, depending on the number of 

ramps in the slope and on the global slope height 𝐻1, a second optimization iteration with these new 

parameters is carried out to obtain a more precise pit shell. Based on the second pit shell, the 

optimization model for ramps generation is used again to obtain a second pit shell with ramps.  
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Fig. 8. Optimization process to obtain the final pit shell with ramps as a guide to do the final pit designs 

 

 



13 
 

 

Fig. 9. Schematic view of a ramp generated by the mathematical model in the slope 

In the first iteration, using the optimization model, only one external frontier layer and one internal 

frontier layer are considered in finding the first approximation of the solution. A pit frontier layer is a 

set of blocks with its internal and external limits parallel in all directions to the pit shell limits. One 

frontier layer is equivalent to the width of one block. In the optimization model, the frontier layers 

correspond to the domain where the mathematical model is going to find the solution for the location 

of the ramp. As the number of layers grow, the time to find the solution increases. For this reason, in 

the first iteration, as an approximation of the solution is sought, only one external frontier layer and 

one internal frontier layers is considered. 

Six frontier layers are shown with layers ranging from -3 to -1 corresponding to the three internal 

frontier layers, and with layers ranging from 1 to 3 corresponding to the three external frontier layers 

(Fig. 10). 

In the second iteration of the optimization process, more than one external and internal frontier 

layers are considered to obtain a larger domain for the location of the ramp’s segments and, therefore, 

a more precise result is going to be found.  

 



14 
 

 

Fig. 10. Pit frontier layers of a pit shell 

4 Results and Analysis 
For the comparison of the pit designs with and without the use of the mathematical model, the 

variables considered are: total material tonnage, ore tonnage, stripping ratio, copper grade, metal 

contained, and total profit. 

A plan view at the top level of the pit shell in the first iteration with the four selected starting 

points is shown in Fig. 11. 

 

Fig. 11. Pit shell at the top level with the four selected starting points 

For each of the starting points, two scenarios were considered: one by generating the ramp in a 

clockwise direction and the other by generating the ramp in a counterclockwise direction. The pit depth 

was considered to be 𝐻0 = 230 m and two ramps in the slope were used to calculate the overall slope 
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angle using Equation (3), resulting in 𝛽0 = 45.2°.  Tab. 1 provides the results for every starting point 

detailed in Fig. 11.  

Tab. 1. Results for the first pit shell with ramps 

Starting 

point 

Direction of 

ramp 

 

Average 

grade of road 

  

[%] 

 

Total 

tonnage  

 

[MT] 

 

Total 

ore 

 

[MT] 

Stripping 

ratio 

 

Average 

Cu grade 

 

 [%] 

 

Metal 

contained 

 

 [MT] 

 

 

Profit  

 

[MUS$] 

1. 

Counter 

clockwise 9.3 58.9 44.2 0.33 0.81 0.36 222.8 

2. 

Counter 

clockwise 9.0 57.0 43.5 0.31 0.81 0.35 221.9 

3. 

Counter 

clockwise 8.9 58.1 43.9 0.32 0.81 0.35 221.2 

4. 

Counter 

clockwise 9.4 57.2 43.8 0.31 0.81 0.35 223.4 

1. Clockwise 9.0 57.9 44.0 0.32 0.81 0.36 223.7 

2. Clockwise 8.8 57.3 43.8 0.31 0.81 0.35 223.3 

3. Clockwise 9.1 57.0 43.7 0.30 0.81 0.35 223.2 

4. Clockwise 9.3 57.9 43.9 0.32 0.81 0.36 223.5 

 

The results considering different starting points are very close (Tab. 1). The difference between 

the best profit and the worst profit (starting point 1 clockwise direction and starting point 3 counter 

clockwise direction, respectively) is calculated to be 1,1%. Taking into account that there is a gap in 

all optimization problems, which in this particular case was imposed to be less than 1%, then all the 

starting points for the ramp access have practically the same profit. For further analysis, point 1 was 

selected for the ramp access with a counter clockwise direction.  

There are two ramps in almost all the slopes of the pit (Fig. 12). With this information, in addition 

to obtaining the pit depth, which is 𝐻1 = 190 m, it is possible to calculate an overall slope angle using 

Equation (3), which is 𝐵1 = 44.5°. With this new angle and taking point 1 as a reference point (selected 

in the first iteration of the analysis), a second iteration was carried out as detailed in the optimization 

process (see Fig. 8) to obtain the final pit shell with ramps as a guide to do the final pit designs. 
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Fig. 12. Pit shell with ramps starting from point 1 in a counter clockwise direction 

A summary of the results for the first and the second iterations is presented in Tab. 2. 

Tab. 2. Results for the pit shell with ramps for the first iteration and the second iteration 

Iteration 
Average 

grade of road  

Total 

tonnage  

 

Total ore  

 

Stripping 

ratio 

Average Cu 

grade  

Metal 

contained  
Profit 

 [%] [MT] [MT]  [%] [MT] [MUS$] 

1. 9.3 58.9 44.2 0.33 0.81 0.36 222.8 

2. 9.1 60.9 44.9 0.36 0.82 0.37 232.7 

 

The profit obtained in the second iteration is higher than the profit obtained in the first iteration 

(Tab. 2). This occurred because the pit shells considered for both iterations were different and, in the 

second iteration, three external frontier layers and three internal frontier layers were considered. 

A summary of the results for the pit designs based on the pit shell with ramps from the 

mathematical model and the pit designs based on the planner criteria are shown in Tab. 3. 
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Tab. 3. Comparison between pit designs without using the mathematical model and using the mathematical 
model  

  

Total 

Tonnage 
Total Ore 

Stripping 

ratio 

Average Cu 

grade 

Metal 

contained 
Profit 

  [MT] [MT]   [%] [MT] [MUS$] 

Pit designs 

(without 

using model) 
64.4 

 

45.0 

 

0.431 

 

0.817 

 

0.31 

 

228.96 

 

Pit designs 

(using model) 

 

63.8 

 

45.0 

 

0.418 

 

0.816 

 

0.31 

 

229.05 

 

Original 

envelope 
58.72 

 

41.12 

 

0.428 

 

0.822 

 

0.29 

 

248.03 

 

 

The mathematical model is able to produce a pit with an equivalent value to the one obtained by 

the standard methodology (Tab. 3). This validates the results obtained according to the proposed 

methodology, which means that the model can be used to aid the mine planner to test different 

scenarios to locate the ramp. Otherwise, using the current design practice, i.e., without using the 

mathematical model, the evaluation of locating the ramp entrance at different points is a time 

consuming task. 

The results presented in this study are applicable to specific conditions; for other parameters, the 

difference between the current design practice and the design based on the mathematical model can 

vary. 

5 Conclusions 
The mathematical model and methodology proposed in this work for the design of ramps for open 

pit mines is a guide to obtain the optimal location for the ramp access in pit designs. Even though, 

there was no significant difference in the final results between the designs using the mathematical 

model and the current practice for pit designs, the most important advantage of the model is that many 

scenarios for locating the ramp entrance can be evaluated and, for every scenario, the model will give 

an optimal result in terms of profit.  Contrarily, the current state of art of design cannot assure an 

optimal solution for maximizing the profit and the evaluation of locating the ramp entrance at different 

points as it takes considerable time to consider each scenario. 

This work was undertaken considering a final pit with one single phase. The model is now being 

developed to consider cases with more than one phase (as most of the open pit projects). In addition, 

new heuristic methods must be introduced in the mathematical model to shorten the processing time. 
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