
A new hybrid heuristic algorithm for the Precedence Constrained
Production Scheduling Problem: A mining application

Enrique Jélveza,b, Nelson Moralesa,b, Pierre Nancel-Penarda,b, Fabien Cornillierc

aAdvanced Mining Technology Center, Universidad de Chile, Santiago, Chile
bDelphos Mine Planning Laboratory, Department of Mining Engineering, Universidad de Chile, Santiago, Chile

cDepartment of Industrial Engineering, Universidad de Ingenieria y Tecnologia – UTEC, Lima, Peru

Abstract

In this work we address the Precedence Constrained Production Scheduling Problem (PCPSP), the

problem of scheduling tasks in such a way that total profit is maximized, while satisfying conditions

such as precedence constraints among tasks and side constraints. A motivation for addressing this

problem comes from open-pit mining industry, where the PCPSP seeks to maximize the net present

value of an ore deposit by selecting the blocks (tasks) to extract, their extraction periods and their

processing options, while satisfying constraints as precedences among blocks, limited availability

of operational resources and maximum and/or minimum allowable concentrations of ore-grade or

pollutants. Since real-world models have millions of blocks and constraints, the monolithic problem

is computationally intractable. This article presents a hybrid heuristic algorithm that combines a

rolling horizon decomposition with a block preselection procedure, allowing near-optimal solutions

to be quickly determined. The proposed heuristic was tested on all the PCPSP instances of the

MineLib library and has shown a significant improvement over the previous reported results.

Moreover, a good feasible solution has been found for the instance W23, for which no solution has

been previously reported.

Keywords: Precedence Constrained Production Scheduling, open-pit mine production planning,

hybrid heuristic, mixed-integer linear programming

∗Corresponding author: Enrique Jélvez, Advanced Mining Technology Center, Universidad de Chile, Santiago,
postal code 8370451, Chile. E-mail address: enrique.jelvez@amtc.cl

1. Introduction

The Precedence Constrained Production Scheduling Problem (PCPSP) belongs to a special

class of problems commonly found in operations management and production planning, where

tasks must be scheduled over a time horizon and assigned to a destination (i.e. a processing

facility), satisfying production capacity constraints and precedence constraints, while maximizing

profits. Simplified versions of this problem only consider a single-period, i.e., they do not take

into account the temporal dimension (Lerchs and Grossmann, 1965; Picard, 1976; Ibarra and Kim,

1978; Boyd, 1993; Underwood and Tolwinski, 1998; Hochbaum, 2008). In other versions of this

problem the processing facility is preassigned (Caccetta and Hill, 2003; Moreno et al., 2010; Bley

et al., 2010; Shishvan and Sattarvand, 2015). Among all applications of this problem and its

extensions, the mine production planning seems to be the most challenging due to the huge size

of instances (Bienstock and Zuckerberg, 2010). In this article, we propose applying the PCPSP

to open-pit mine production planning.

In long-term open-pit mine production planning the goal is to maximize the net present value

of the extracted and processed material. In such mines, the mineral is reached by digging material

from the surface. Depending on its composition, its profitability, and the availability of the

processing facilities, the extracted material is either assigned to a processing facility, accumulated

into stockpiles for later processing, or put into waste dumps. To define what portions of the

terrain must be mined at each time-period, the terrain is modeled as a three-dimensional grid of

blocks and the planning horizon is discretized into periods. In this application, tasks correspond

to blocks and the objective is to find the best strategy to extract and process the blocks.

For each block, estimations on the ore content, tonnage, and other relevant attributes are

constructed by using geostatistical methods (see Chiles and Delfiner (2009)) based on terrain

samples. The location and attributes of the blocks form the so-called block model. The contribution

of a block to the overall value mainly depends on its geological attributes, its extraction period,

and how it is processed, in addition to external variables such as commodity price and mining

costs.

In mining context, the PCPSP is the problem of determining which blocks to extract at each

period in the planning horizon, and of assigning each extracted block to a processing facility, while

maximizing the discounted profit satisfying technical and operational constraints. Examples of

technical constraints are the slope precedences, by which the extraction of a block is feasible when

a determined set of blocks located above it has been extracted, respecting maximum slope angles

to ensure the stability of the pit walls. Operational constraints are inherent to the extraction

process: the amount of material to be transported and processed (operational resources) at each

period is generally subject to upper and possibly lower limits. Processing material also implies

satisfying blending constraints associated with its quality. Indeed, the efficiency of the processing,

2

even its feasibility, depends on the combination of blocks processed simultaneously at a facility. In

particular, it may not be feasible to process alone a block with a high content of pollutants such

as arsenic, even with a high ore-grade. In such case, it could be possible to process it by mixing it

with other blocks (even low ore-grade ones) whenever the blending provides an acceptable amount

of pollutants.

Most of the real instances of the PCPSP in the mining industry are difficult to solve with block

models containing millions of blocks for a planning horizon as long as several decades. The main

contribution of this article is to propose a hybrid heuristic based on a sliding time-window and a

linear relaxation to preselect a small subset of blocks to be scheduled within each time-window.

Contrary to other existing heuristics applied to the PCPSP, the proposed algorithm is able to

tackle problems with blending constraints.

The remainder of this article is organized as follows: Section 2 provides a brief summary of

the most relevant or best-known approaches and results from the literature. Section 3 provides a

mathematical model for the PCPSP. A description of the proposed heuristic algorithm is given in

Section 4, followed by computational results in Section 5 and conclusions in Section 6.

2. Related work

Lerchs and Grossmann (1965) presented an algorithm to solve the Final Pit Problem, a

simplified version of the PCPSP in which a single value – positive or negative – is associated with

each block without consideration to its extraction period and its final destination: the temporal

dimension is ignored. In this problem, the objective is to identify the set of blocks to be extracted

to maximize the total undiscounted profit while satisfying only slope precedence constraints. In

the same article, Lerchs and Grossmann described how a sequence of nested pits can be generated

with their algorithm and used as a guide to schedule the extraction of blocks over time (see Jélvez

et al. (2018) for a review). Commercial software, such as Whittle from Geovia, are based on this

algorithm.

Closer to the problem under consideration in this article, the pioneer work of Johnson (1968)

proposed for the first time a linear programming formulation under slope precedence, capacity

and specific blending constraints within a multi-destination setting, where the optimization model

determines the best process to apply to each extracted block. Due to the nature of variables used

in this model, it may happen that a portion of a block is extracted while all the overlying blocks

have not been mined, making the solution unfeasible in practice.

Because of the difficulty to directly solve PCPSP instances of practical sizes, many algorithms

have been proposed to find good feasible solutions of this problem and its variations. A well-studied

variation consists in setting the destination of each block a priori (i.e., the destination of each

block is not a decision variable) and ignoring blending requirements (see for example Ramazan

3

(2007), Cullenbine et al. (2011), Chicoisne et al. (2012), Jélvez et al. (2016) and Samavati et al.

(2018)).

The particular case of the PCPSP, which includes block destinations, slope precedence, capacity

and blending constraints, has been previously studied. Bienstock and Zuckerberg (2010) addressed

the linear relaxation of the PCPSP and proposed a method based on a Lagrangian relaxation

evidencing a substantial computation-time improvement with regards to the standard linear

programming solvers. As such, this important method does not give any feasible solution, but

rather gives an upper-bound on the objective value.

Espinoza et al. (2013) applied a heuristic based on a topological sorting to solve both, the

PCPSP considered in this paper, where the destination of a block is a decision variable, and the

Constrained Pit Limit Problem (CPIT), a simplified version of the PCPSP where block destinations

are preassigned. They also proposed standardized testbed instances (MineLib library) for these

problems.

While some authors have proposed outperforming solutions for the MineLib CPIT instances

(see Lamghari et al. (2015), Liu and Kozan (2016), Jélvez et al. (2016) and Samavati et al. (2017,

2018)), to the best of our knowledge, only Kenny et al. (2017) have reported improved solutions

for some MineLib PCPSP instances by using a Greedy Randomized Adaptive Search Procedure

(GRASP). However, neither lower limits on resources consumption nor general side constraints

as blending are considered in their model, which makes it impossible to apply to some MineLib

instances.

This article tackles the PCPSP as introduced by Espinoza et al. (2013), proposes a hybrid

heuristic algorithm and compares the results with those published in Espinoza et al. (2013) and

Kenny et al. (2017).

3. The Precedence Constrained Production Scheduling Problem

Denote by B the set of blocks, by Bb the subset of predecessors of block b ∈ B, by D the

set of destinations, and by R the set of operational resources needed to extract and process the

blocks. A profit pbdt is obtained by extracting block b and processing it at destination d at period

t ∈ T = {1, . . . , T}, where T denotes the planning horizon, while an amount qbdr of operational

resource r is used to extract block b and process it at destination d ∈ D.
¯
Rrt represents the

minimum use and R̄rt the maximum availability of resource r at period t.

We define binary variables zbt equal to 1 if block b is extracted by period t, and 0 otherwise;

and continuous variables ybdt represent the portion of block b sent at destination d at period t.

The PCPSP can be formulated as follows:

4

(PCPSP) max
∑
b∈B

∑
d∈D

∑
t∈T

pbdt ybdt (1)

s.t. zb,t−1 ≤ zbt ∀b ∈ B, t ∈ T (2)

zbt − zb,t−1 =
∑
d∈D

ybdt ∀b ∈ B, t ∈ T (3)

zbt ≤ zb′t ∀b ∈ B, b′ ∈ Bb, t ∈ T (4)

¯
Rrt ≤

∑
b∈B

∑
d∈D

qbdrybdt ≤ R̄rt ∀r ∈ R, t ∈ T (5)

¯
a ≤ Ay ≤ ā (6)

zbt ∈ {0, 1} ∀b ∈ B, t ∈ T (7)

zb0 = 0 ∀b ∈ B (8)

ybdt ∈ [0, 1] ∀b ∈ B, d ∈ D, t ∈ T (9)

In this formulation, the objective function (1) maximizes the discounted total profit.

Constraints (2) ensure that a block is scheduled in one period at most. Constraints (3) require that

if a block is extracted, it must be fully sent to one or more destinations. Constraints (4) prevent

the extraction of any block for which all the predecessors have not been previously extracted.

Constraints (5) state that the minimum
¯
Rrt and maximum R̄rt use of every operational resource r

are satisfied for each period t, and constraints (6) correspond to the general side constraints with

lower and upper bounds
¯
a and ā, respectively. Finally, constraints (7) to (9) reflect the nature of

the variables.

General side constraints may represent blending requirements to feed processing plants, but

other examples are presented in Espinoza et al. (2013) and could include: (i) a minimum number

of blocks that must be extracted on a given level; (ii) ore allowed to be stockpiled; (iii) a variable

production and/or processing rate, e.g., it is possible to purchase extraction equipment and/or

increase the capacity of the processing plant(s); (iv) a minimum number of blocks at the bottom

of the pit; and (v) a limitation to the number of areas that can be simultaneously mined due to

geotechnics and equipment availability.

We use a by-formulation equivalent to the stronger formulation proposed by Bienstock and

Zuckerberg (2010) and Espinoza et al. (2013) where decision variables xbt take value 1 if block b

is extracted at period t. In the proposed formulation, we apply the variable substitution xbt =

zbt − zb,t−1 with zb0 = 0 in order to obtain a better representation of the precedence constraints

making explicit the underlying network structure, as reported in the literature (Caccetta and Hill

(2003) and Lambert et al. (2014)). In this representation, decision variables zbt take value 1 if

block b is extracted by period t. As a final comment, a full-binary formulation of the PCPSP can

5

be found in Jélvez et al. (2019).

4. A hybrid heuristic based on rolling horizon and block preselection

The PCPSP is a strongly NP-hard problem (Espinoza et al., 2013) and solving it to optimality

with an optimization solver is intractable for real size instances involving a prohibitive number

of blocks and periods. We propose decomposing the monolithic problem into a series of smaller

subproblems on a rolling horizon basis, preselecting a subset of candidate blocks to consider in each

subproblem. The significantly reduced number of variables and constraints of the subproblems

generally allows building a feasible solution, if one exists.

4.1. Rolling horizon

Starting from the first period t = 1 of the planning horizon, this method iteratively constructs

a schedule for each period by solving the PCPSP for a reduced time-window {t, . . . ,min{t + w −

1, T}}, where the maximum length of time-window w is an integer parameter to be determined.

Each time the subproblem is solved, the variables zbt and ybdt are fixed for the first ∆ periods

of the incumbent time-window, where ∆ ≤ w is another parameter to be determined. The time-

window is then moved forward by ∆ periods, and the new subproblem is solved for the respective

new time-window. The procedure stops when the last subproblem that includes the period t = T

has been solved and fixed. Note that when a solution is obtained for a subproblem, the procedure

allows a partial or complete fix of the time-window as part of the final feasible solution.

Similar approaches have been explored by Cullenbine et al. (2011), and Lambert and Newman

(2014) for a simpler problem (see Section 2), where the authors consider a sliding time-window, but

additionally relax the integrality constraints on the variables corresponding to the periods beyond

the incumbent time-window. Therefore, the subproblems always have the same number of periods

than the monolithic instance. The proposed heuristic ignores these periods to reduce the number

of variables considered in each iteration. Indeed, preliminary experiments on several PCPSP

instances show that the impact on the objective value when relaxing the integrality constraints

on the variables corresponding to the subsequent periods does not justify the major increase of its

computation-time. Appendix A shows that no feasible solution has been found with this heuristic

within 24 hours of computational time for 8 out of 10 MineLib instances. In these articles, capacity

constraints are also approached using a Lagrangian relaxation, while the proposed approach keeps

them intact in the subproblems formulation.

4.2. Block preselection

Despite a significant reduction of the number of decision variables and constraints when

the problem is decomposed into simpler subproblems as described in Section 4.1, the resulting

6

subproblems may still be difficult to solve. Indeed, the number of blocks in a mine can be

considerable and easily exceeds hundreds of thousands, or even millions of blocks. To overcome this

difficulty, we propose a heuristic based on the expected extraction times introduced by Chicoisne

et al. (2012) to preselect the subset of blocks to be included in the model.

Let z̃∗bt be the solution of the LP relaxation of the monolithic PCPSP instance. The expected

extraction time of any block b is given by:

ETb =
∑
t∈T

t(z̃∗bt − z̃∗b,t−1) + (T + 1)(1− z̃∗bT). (10)

The idea is to interpret the fractional values z̃∗b· as the cumulative distribution probability of the

extraction time, therefore z̃∗bt − z̃∗b,t−1 represents the probability of extraction of block b at period

t. We assume that any block b not extracted by time T is extracted at time T + 1, and we

set ETb = T + 1.

We define B as the set of blocks not yet extracted at period t and for which the expected

extraction time ETb is smaller than min{t+w− 1, T}+ s, where s > 0 is a continuous parameter

to be determined that represents a tolerance for a block to be considered in each subproblem.

This tolerance parameter gives some control over the selected blocks, however in our proposal

we take advantage of fast algorithms such as the Bienstock-Zuckerberg algorithm (Bienstock and

Zuckerberg, 2010) to solve the LP relaxation of the PCPSP, and based on expected extraction

times, to choose a value of s to preselect a reduced set of blocks to be considered in each subproblem

on a rolling horizon.

It is worth noting that in this procedure the expected times are used as a block preselection

tool to reduce the size of the subproblems: they are not used to generate a sequence of blocks as

proposed in the TopoSort heuristic developed by Chicoisne et al. (2012). Note that the TopoSort

approach may have a high risk for producing infeasible solutions when, for example, there are lower

bounds on resource constraints. Besides, by construction it cannot tackle general side constraints

such as blending.

4.3. Description of the hybrid heuristic algorithm

The proposed hybrid heuristic combines a rolling horizon method in order to reduce the number

of periods in each subproblem (Section 4.1) and a block preselection procedure based on expected

extraction times in order to reduce the number of blocks within each subproblem (Section 4.2).

Then a feasible solution is constructed iteratively. Note that the hybrid heuristic depends on three

parameters: w (length of the sliding time-window), ∆ (sliding shift length) and s (tolerance to

select blocks from expected extraction times). In particular, when w = ∆ = T and s ≥ T + 1 this

heuristic is equivalent to solving the monolithic version of the PCPSP, therefore, the algorithm is

exact if the optimality gap is set to zero in the Branch & Cut resolution. For other cases, only a sub-

optimal feasible solution would be obtained. It is important to point out that the nearsightedness

7

of our heuristic does not guarantee finding a feasible solution, if one exists, however, the parameters

could be modified whenever a subproblem is infeasible in an attempt to recover feasibility.

Basically, the algorithm has the following steps:

1. Select a time-window, according to Section 4.1.

2. Select a sub-block model, in accordance with Section 4.2.

3. Construct a subproblem.

4. Solve the subproblem to select the blocks to be extracted and processed.

5. Stop if the termination condition (time limit or gap) is satisfied or if no feasible solution can

be identified, otherwise go to the Step 1.

Figure 1 depicts a k-th iteration of the algorithm associated with the time-window Tk = {t1, . . . , t2}

which goes from period t1 = 1 + (k − 1)∆ to period t2 = min{1 + (k − 1)∆ + w, T}:

1. The algorithm keeps a set Ek of extracted blocks and selects a set Bk = {b ∈ B−Ek : ETb ≤

k · w + s} of block candidates to extract in the current time-window.

2. The subproblem is solved over blocks Bk and periods Tk. The subproblem’s solution is used

to set the extraction period and the destination of the scheduled blocks of Bk for the first ∆

periods of Tk.

3. The set of scheduled blocks Ek+1 is updated.

4. The time-window moves forward by ∆ periods.

Ek Ek+1

Bk

(a) (b) (c)

Figure 1: A k-th iteration of the proposed algorithm. Ek is the set of already extracted blocks and Bk is the set

of preselected blocks used for the auxiliary problem. Firstly (a) the set of blocks Bk are computed according to

expected extraction times and to the tolerance parameter s, then (b) a subset of Bk is scheduled for extraction and

processing, and finally (c) the scheduled blocks are updated.

A more detailed description of the hybrid heuristic algorithm is presented in Figure 2. As inputs,

the algorithm takes (i) a PCPSP instance, and (ii) the parameters w, ∆ and s. The output of the

algorithm is the production schedule, i.e., the set of extracted blocks, their extraction periods and

their destinations.

At Step 1 the LP relaxation of the PCPSP model is solved with the Bienstock-Zuckerberg

algorithm (Bienstock and Zuckerberg, 2010), and the optimum value of the continuous decision

8

variables z̃bt and ỹbdt are returned. For each block b ∈ B the expected extraction time is computed

(Step 2), and the period and the destination are initialized (Steps 3 and 4). The first time-window

is initialized so as to start at period t1 = 1 (Step 5). For any time-window starting at period

t1 ≤ T , the last period t2 of the time-window and the set B of preselected blocks are initialized

(Steps 6 and 7), the incumbent PCPSP subproblem is solved, and the optimal value of the binary

decision zbt and continuous decisions ybdt are returned (Step 8). In Step 9, the algorithm stops

with the unfeasibility status if no feasible solution is found for the incumbent subproblem with the

current parameters ∆, w, s. Otherwise, the values of z∗ and y∗ are used to fix the period and the

destination of all the blocks scheduled in the first ∆ periods of the incumbent time-window (Steps

10 and 11). Finally, a new time-window is initialized so as to start ∆ periods later if t1 + ∆ ≤ T ,

otherwise the algorithm ends.

Finally, it is worth noting that feasibility of the solutions generated by the heuristic depend

on feasibility of the subproblems. If for each time-window the algorithm finds a feasible solution,

then feasibility is guaranteed for the monolithic version of the PCPSP. Otherwise, feasibility on a

subproblem may be recovered by increasing either the parameter w and by restarting the algorithm

from the beginning. Because of this, for the numerical experiments, we embed the heuristic into

a solving strategy that adapts the values of ∆ and w to make sure it finds a solution. While such

strategy may end up trying to solve the monolithic version of the problem, in practice the results

show that good feasible solutions are obtained with relatively small values of w.

4.3.1. Parameters setting

As the success of the proposed hybrid heuristic depends on the choice of parameters s, w

and ∆, in this section we give a detailed explanation of these parameters and some guidelines for

choosing their values.

The procedure used to determine the value of the parameter s is designed to ensure that all

time-windows have a sufficient number of preselected blocks to allow a fully use of the maximum

capacity. This parameter is also used to limit the risk of infeasibility of the subproblems in instances

with minimum resource constraints or blending constraints. If s = 0, a block is considered in the

subproblem whenever its expected extraction time is less than or equal to the upper limit of the

incumbent time-window. Increasing the parameter s allows the consideration of additional blocks

with higher expected extraction time than the strict upper limit of the incumbent time-window.

Setting its value is a trade-off between feasibility and the number of decision variables.

The length w of the sliding time-window has a great impact on both quality of solution (even

feasibility) and computation time. Increasing w allows the algorithm to work in a wider search

space or a more diverse set of solutions at once, making it less likely to get trapped in local optima

and therefore produces higher quality solutions (Kenny et al., 2017). Unfortunately, it also implies

9

Algorithm: Hybrid heuristic

Input: A PCPSP instance: Block model B, sets of precedence arcs Bb, set of destinations D, a number

of time-periods T , block values, number of resources R, amount of resource required per block,

bounds on resources and general side constraints.

Heuristic parameters: Sliding time-window size w, sliding step ∆ and tolerance parameter s.

Output: Set of extracted blocks, extraction periods and block destinations.

1 (z̃∗, ỹ∗)← LPSolve(PCPSP(1, T,B))

for b ∈ B do

2 ETb ← ExpectedTime(b, z̃∗)

3 period(b)← +∞

4 destination(b)← (0)d∈D

end

5 t1 ← 1

while t1 ≤ T do

6 t2 ← min{t1 + w − 1, T}

7 B ← {b ∈ B | period(b) = +∞, ETb ≤ t2 + s}

8 (z∗, y∗)← IPSolve(PCPSP(t1, t2, B))

9 if (z∗, y∗) unfeasible then
return UNFEASIBLE

end

for {(b, t) | b ∈ B, t ∈ {t1, . . . ,min{t1 + ∆− 1, T}}, z∗bt − z∗b,t−1 = 1} do

10 period(b)← t

11 destination(b)← (y∗bdt)d∈D

end

12 t1 ← t1 + ∆

end

return (period, destination)

Figure 2: Algorithm of the hybrid heuristic

an increased number of variables in the subproblem as well as a larger computation time. As such,

choosing a value for this parameter is a trade-off between quality of solution and computation

time.

The parameter ∆ is the length of the sliding shift. It is also the number of periods of the

incumbent time-window whose respective decision variables will be fixed.

4.3.2. Numerical example

In this section a small numerical example of the PCPSP with only one destination is presented

to compare the proposed heuristic with a pure rolling horizon heuristic. Figure 3 describes a small

2-D block model with the value of each block. We assume a slope angle of 45o, a tonnage of 1 for

10

all blocks, an extraction capacity of 4 blocks per period, and a 10% discount rate.

The pure rolling horizon heuristic is used with parameters w = 1 and ∆ = 1, then the generated

solution starts with the small pit on the left of the block model, then moves to the right (see

Figure 4). The cumulative discounted objective values obtained for the three periods are 2.00,

3.36 and 6.25, respectively.

The hybrid heuristic is applied on the same block model with the parameters w = 1, ∆ = 1 and

s = 0.5. First, the linear relaxation is computed and a LP upper bound of 6.58 is obtained. Then

the expected extraction time values are computed as shown in Figure 5. In the first subproblem

6 blocks with expected extraction times lower than w + s = 1.5 are preselected. The resulting

production schedule is as shown in Figure 6. The cumulative discounted objective values obtained

for the three periods are 1.50, 4.68 and 6.33, respectively.

A 3.79% gap solution is obtained with the proposed heuristic compared with a 4.98% gap

for the pure rolling horizon approach. We observe in this example that the pure rolling horizon

heuristic tends to act in a more greedy fashion than the proposed heuristics guided by the expected

extraction times.

It is worth noting that the proposed heuristic also tends to run faster than the pure rolling

horizon heuristic. Indeed, for each subproblem the proposed heuristic considers fewer blocks than

the pure rolling horizon heuristic. In the first subproblem of this example, 14 blocks are considered

in the pure rolling horizon heuristic when only 6 blocks are considered in the proposed heuristic

(see Figure 5).

−1 −1 −1 −1 −1 −1 −1

−1 5 −1 −1 4.5 4.5 −1

Figure 3: 2-D block model with block values

1 1 1 2 2 2 3

1 2 3

Figure 4: Extraction periods with the pure rolling horizon heuristic

11

2.5 2.5 2.5 1.33 1.33 1.33 1.33

2.5 1.33 1.33

Figure 5: Expected extraction times

3 3 3 1 1 1 2

3 1 2

Figure 6: Extraction periods with the proposed heuristic

5. Computational results

This section presents the details regarding the implementation of the proposed heuristic and

the results obtained on a set of instances from the MineLib library (Espinoza et al., 2013).

5.1. Computational setting

The proposed algorithm was coded in C++ with Gurobi 6.5.2 API and executed on a 64-bit

Windows OS workstation with ten 2.6 GHz Intel Xeon E5 2660 v3 processors and 120 Gb RAM.

To solve the partitioning problem, we implemented the BZ algorithm (Bienstock and Zuckerberg,

2010) for the integer relaxation with the default Gurobi parameters and our own implementation

of the pseudo-flow algorithm (Hochbaum, 2008) to solve the sub-problems. The only Gurobi

parameters set differently from the defaults were TimeLimit=20,000 and MIPGap=0.01 to solve

each subproblem.

The instances come from the publicly available MineLib library (Espinoza et al., 2013). A

complete list of the MineLib instances is presented in Table 1. For each instance, Table 1 gives

the number |B| of blocks, the number of precedences, the number T of periods, the number |D| of

destinations and the number |R| of operational resources.

As mentioned before, the hybrid heuristic may fail to find a feasible solution, and for this

reason a solving strategy is used as a subroutine. The solving strategy first sets the parameter s

to ensure that all time-windows have a sufficient number of preselected blocks at each iteration.

This parameter is set such as to have the number of blocks |Bk| considered in the subproblem k as

close as possible than w|B|/T to better distribute the considered blocks among the subproblems.

The parameter s is initially set to 0.5 and increased whenever the number of blocks |Bk| is less

12

Table 1: MineLib PCPSP instances

Instance Name |B| #Precedence T |D| |R|

Newman1 1,060 3,922 6 2 2

Zuck small 9,400 145,640 20 2 2

KD 14,153 219,778 12 2 1

Zuck medium 29,277 1,271,207 15 2 2

Marvin 53,271 650,631 20 2 2

W23 74,260 764,786 12 4 7

Zuck large 96,821 1,053,105 30 2 2

SM2 99,014 96,642 30 2 2

McLaughlin limit 112,687 3,035,483 15 2 1

McLaughlin 2,140,342 73,143,770 20 2 1

than w|B|/T while there are sufficiently blocks not yet scheduled (i.e., |B − Ek| ≥ w|B|/T). The

parameter s is set as following:

s← 0.5

while |Bk| < w|B|/T and |B − Ek| > w|B|/T do

s← s + 1.0

end

The parameters w and ∆ are initially set to w = ∆ = 2. They are both increased by 2

whenever a gap greater than 1% is found for the global problem, or the subroutine reports an

infeasibility. In such case, the solution process to generate a feasible solution is restarted from the

first time-window.

5.2. Results and discussion

Table 2 shows the set of values for w, ∆ and s at each iteration, with a maximum computation

time limit of 36,000 seconds for the complete process. The algorithm returns the best feasible

solution found whenever the 1% gap criterion is satisfied or the time limit is reached. For each

of the MineLib instances we report: (i) the name of the instance and the parameters (w,∆, s);

(ii) the LP upper bound found with the BZ algorithm Bienstock and Zuckerberg (2010) and (iii)

the times to compute each step of the proposed heuristic (the computation time to solve the LP

relaxation and the time to find a feasible solution for the global problem) and the cumulative

times from the LP relaxation, (iv) the objective values and (v) the optimality gaps of the feasible

solution found relative to LP upper bound.

For example, for the instance Zuck small, 85 seconds are needed to solve the LP relaxation

with the BZ algorithm, then 190 seconds to generate a solution with a 8.03% gap with w = ∆ = 2,

13

then 554 additional seconds to generate a solution with a 7.02% gap with w = ∆ = 4. Because

neither the time limit was reached nor the 1% gap criterion was satisfied, the parameters w and ∆

were increased to 6, for which the algorithm generated a 0.77% gap solution in 5, 557 additional

seconds before stopping, for a total of 6, 406 seconds.

Table 2: Detailed results of the proposed heuristic with w = ∆ and s for each iteration (values in bold correspond

to best solutions found)

Instance Results

Name
Parameters

LP upper LP relaxation Heuristic Cumulative Objective GAP

w = ∆ s bound Time (s) Time (s) Time (s) value %

Newman1

2 0.5

24,486,549 1

6 7 24,150,103 1.37

4 0.5 10 17 24,175,453 1.27

6 0.5 19 36 24,163,607 1.32

Zuck small

2 2.5

905,878,194 85

190 275 833,155,317 8.03

4 0.5 554 829 842,284,279 7.02

6 0.5 5,557 6,406 898,931,342 0.77

KD

2 1.5

410,891,003 54

66 120 390,773,878 4.90

4 0.5 765 885 383,404,031 6.69

6 0.5 4,335 5,240 409,319,677 0.38

Zuck medium 2 1.5 750,519,188 251 25,755 26,006 713,051,791 4.99

Marvin

2 2.5

911,704,801 92

133 225 830,130,522 8.95

4 0.5 366 591 864,880,388 5.14

6 0.5 2,419 3,010 904,519,813 0.79

W23 2 0.5 387,678,103 25,134 1,458 26,592 380,861,353 1.76

Zuck large 2 1.5 57,938,798 3,771 25,739 29,510 56,426,079 2.61

SM2 2 1.5 1,652,393,887 1,679 25 1,704 1,650,878,860 0.09

McLaughlin lim 2 0.5 1,324,829,834 1,884 4,179 6,063 1,321,480,663 0.25

McLaughlin 2 0.5 1,512,971,541 6,762 9,354 16,116 1,511,899,590 0.07

Table 3 shows the main results for the PCPSP instances and a comparison with the best-

known results from literature. For each case we report: (i) the LP upper bound; (ii) the source

of the current best-known solution: EGMN13 corresponds to Espinoza et al. (2013) and KLET17 to

Kenny et al. (2017); (iii) the best-known optimality gap; (iv) the objective value obtained with

the proposed heuristic; (v) its optimality gap; and (vi) the total solution time in seconds (wall-

clock time including the preprocessing step that solves the LP relaxation of the PCPSP and the

heuristic’s iterations up to find a feasible solution to the complete problem).

It is noteworthy that no feasible solution has been previously reported for the instance W23.

This instance is precisely the only MineLib instance that considers general side constraints

14

(blending requirements): it should be recalled that neither the TopoSort heuristic used in Espinoza

et al. (2013) nor the Greedy Randomized Adaptive Search Procedure (GRASP) proposed in Kenny

et al. (2017) consider this kind of constraints.

Table 3: Comparison between the previously reported solutions and the solutions obtained with the proposed

heuristic

Instance LP upper bound
Best-known solution Proposed heuristic

Source GAP (%) Objective value GAP (%) Time (s)

Newman1 24,486,549 KLET17 1.58 24,175,453 1.27 17

Zuck small 905,878,194 KLET17 1.64 898,931,342 0.77 6,406

KD 410,891,003 EGMN13 0.98 409,319,677 0.38 5,240

Zuck medium 750,519,188 KLET17 3.00 713,051,791 4.99 26,006

Marvin 911,704,801 KLET17 1.61 904,519,813 0.79 3,010

W23 387,678,103 — 100.00 ∗380,861,353 ∗1.76 26,592

Zuck large 57,938,798 EGMN13 1.04 56,426,079 2.61 29,510

SM2 1,652,393,887 EGMN13 0.12 1,650,878,861 0.09 1,704

McLaughlin lim 1,324,829,834 EGMN13 0.24 1,321,480,663 0.25 6,063

McLaughlin 1,512,971,541 EGMN13 0.19 1,511,899,590 0.07 16,116

While running the proposed heuristic, a feasible solution with 1.76% optimality gap has been

found for the instance W23. An improvement is also observed for 6 of the 9 other instances (in

bold without asterisk in Table 3), with a 45.5% gap reduction on average among these 6 instances,

the gap reduction being computed as:

GAP Best-known solution (%)−GAP Proposed heuristic (%)

GAP Best-known solution (%)

.

Among all instances we observe a 14.98% gap reduction on average when the instance W23 is

included, and a 5.72% gap reduction on average when it is excluded.

Regarding the parameters setting, the tolerance parameter s has been increased for the

instances Zuck small, KD, Zuck medium, Marvin, Zuck large and SM2 to obtain a sufficient

quantity of blocks in the first iteration (w = ∆ = 2). To satisfy the gap criterion described in

Section 5.1, it was necessary to increase the length w of the sliding time-window for the instances

Newman1, Zuck small, KD and Marvin (see Table 2).

The more time-consuming instances are Zuck medium, W23 and Zuck large. For these

instances, the gap criterion was not satisfied when using the default values of the parameters

15

w and ∆ within the time limit set at 36,000 seconds (see Appendix B). These parameters had

to be increased applying the rules proposed in Section 4.3.1. For the instances Zuck medium and

Zuck large, most of the CPU time is used to find a feasible solution while, for the instance W23,

most time is used to solve the LP relaxation (see Table 2 for more details).

As a final comment, the reported results were found by following the procedure according to

Section 4.3.1, obtaining better results for 7 out of 10 PCPSP instances from MineLib.

In Appendix C, additional results with ∆ = 1 and various values of the parameter w are

presented.

5.2.1. Added value from the block preselection procedure

In Section 4.3.2 a numerical example has been proposed to compare the pure rolling horizon

heuristic with the proposed heuristic. In this section we propose the same comparison with all the

instances of the MineLib library.

Table 4 shows the results obtained with both approaches while using the parameters w and

∆ stated in Table 2. For each, we present the objective value (in dollars), the relative gap (as

percentage) and the computation time (in seconds).

Table 4: Comparison of a pure rolling horizon approach with a rolling horizon heuristic including the block

preselection procedure (i.e. hybrid heuristic) (values in bold correspond to better solutions)

Instance LP upper

bound

Pure rolling horizon Proposed heuristic

Objective GAP Time Objective GAP Time

value (%) (s) value (%) (s)

Newman1 24,486,549 24,131,200 1.45 26 24,175,453 1.27 17

Zuck small 905,878,194 854,062,473 5.72 11,155 898,931,342 0.77 6,406

KD 410,891,003 382,066,711 7.02 3,741 409,319,677 0.38 5,240

Zuck medium 750,519,188 — 100.00 — 713,051,791 4.99 26,006

Marvin 911,704,801 857,780,482 5.91 4,110 904,519,813 0.79 3,010

W23 387,678,103 338,226,394 12.76 13,203 380,861,353 1.76 26,592

Zuck large 57,938,798 — 100.00 — 56,426,079 2.61 29,510

SM2 1,652,393,887 1,621,601,503 1.86 107 1,650,878,861 0.09 1,704

McLaughlin lim 1,324,829,834 1,210,454,961 8.63 14,553 1,321,480,663 0.25 6,063

McLaughlin 1,512,971,541 — 100.00 — 1,511,899,590 0.07 16,116

With a computing time limit set to 36,000 seconds, the pure rolling horizon approach is able

to provide feasible solutions for 7 out of 10 MineLib instances, and the heuristic runs out of time

for 3 remaining instances. Comparing the results of the pure rolling horizon approach with the

best known solutions, better results are obtained while applying the pure rolling horizon approach

16

to instances Newman1 and W23. The pure rolling horizon approach is able to find a 12.76% gap

solution to instance W23, for which no solutions have been previously reported to date. However,

no feasible solutions are found for instances Zuck medium, Zuck large and McLaughlin.

Compared with the pure rolling horizon heuristic, the proposed hybrid heuristic finds better

results for all instances, with an average of 79.8% gap reduction for the instances for which a

feasible solution is found with the pure rolling horizon heuristic.

6. Conclusions

We introduce a hybrid heuristic algorithm using a block preselection procedure based on

expected extraction times to solve the PCPSP. The problem is decomposed into smaller and easier

subproblems on a rolling horizon basis, where a reduced set of blocks is preselected according to the

LP relaxation solution of the complete problem. When applied to the all PCPSP instances of the

MineLib library without blending constraints, the results obtained by the proposed heuristic show

a significant improvement for 6 out of 9 pre-existing results reported by Espinoza et al. (2013) and

Kenny et al. (2017). This heuristic is also able to handle blending constraints, a special kind of

general side constraints of the PCPSP, which is not the case of both TopoSort heuristic (Espinoza

et al., 2013) nor GRASP algorithm (Kenny et al., 2017). The proposed hybrid heuristic was able

to generate the first feasible solution to date for the only instance with blending constraints, i.e.

W23, with a 1.76% optimality gap.

As a future direction of research it would be interesting to improve the expected extraction

times by strengthening the formulation for the initial integer relaxation and the subproblems, for

example by adding clique cuts as suggested by Bley et al. (2010) and Samavati et al. (2017).

Acknowledgements

E. Jélvez, N. Morales and P. Nancel-Penard were supported by CONICYT Basal Project

FB0809 – Advanced Mining Technology Center – Universidad de Chile.

Appendix A. An extended approach for pure rolling horizon

An extension of the pure rolling horizon approach is presented by Cullenbine et al. (2011),

where the complete problem is solved by using (i) fixed variables in early time periods, (ii) an

exact submodel defined over a window of middle time periods, and (iii) a relaxed submodel in

later time periods, where a Lagrangian relaxation is used for the capacity constraints. Table 5

shows the results on the MineLib instances when this heuristic is applied. For 8 out of 10 PCPSP

instances the algorithm is unable to generate a feasible solution, either because they exceeded the

limit of one-day computation time (7 instances) or because the maximum available memory was

17

insufficient (McLaughlin). Only 2 out of 10 instances were solved: Newman for which a lower gap

is obtained, and SM2 for which the obtained solution improves the current best-known solution.

Table 5: Comparison of the previously reported solutions with the solutions of the extended approach for the pure

rolling horizon proposed by Cullenbine et al. (2011) considering a sliding-time window with w = 2 (values in bold

correspond to new best-known solutions)

Instance LP upper bound
Best-known solution Cullenbine et al. (2011)

Source GAP (%) Objective value GAP (%) Time (s)

Newman1 24,486,549 KLET17 1.27 24,149,615 1.38 49

Zuck small 905,878,194 KLET17 1.64 — 100.00 > 1 day

KD 410,891,003 EGMN13 0.98 — 100.00 > 1 day

Zuck medium 750,519,188 KLET17 3.00 — 100.00 > 1 day

Marvin 911,704,801 KLET17 1.61 — 100.00 > 1 day

W23 387,678,103 — 100.00 — 100.00 > 1 day

Zuck large 57,938,798 EGMN13 1.04 — 100.00 > 1 day

SM2 1,652,393,887 EGMN13 0.12 1,650,662,943 0.10 22,261

McLaughlin lim 1,324,829,834 EGMN13 0.24 — 100.00 > 1 day

McLaughlin 1,512,971,541 EGMN13 0.19 — 100.00 OOM

Appendix B. Detailed results of the proposed heuristic with w = ∆

Table 6 shows the detailed results for each of the MineLib instances with w = ∆. For each

case we report: (i) the name of the instance and the parameters w, ∆ and s; (ii) the relative gaps

(compared to the LP relaxation objective value given by the BZ algorithm) and the cumulative

times (in seconds) which include the computation time for the LP relaxation of the complete

problem, the computation time of the expected extraction times, and the computation time to

solve the subproblems within a total time limit of 36,000 seconds. We also provide the number

of blocks, the number of precedence constraints, the number of variables and the total number of

constraints for the smallest, the average and the largest subproblems. With w = ∆, the extraction

times obtained for the preselected blocks of each subproblem are part of the final global solution.

In general, there is a significant variability in both size and solving-time among the

subproblems, specially between the first and the last subproblem as the last ones contains

few blocks. For example, the instance Zuck large presents the most significant solving-time

variability: in this instance a subproblem reached the 20,000 seconds time limit and the subproblem

in the last time window was solved in 1 second, with an average time per subproblem of 2,139

18

seconds. On the other side, some instances present smaller variability, such as SM2, where all

subproblems need a short solving-time, with a minimum of 0.2 seconds, a maximum of 6.5 seconds

and an average of 2.4 seconds, or the instance W23, with a minimum time for solving a subproblem

of 1 second, other with a maximum of 623 seconds and an average of 291 seconds.

The most important results from Table 6 are summarized in Table 3. An improvement is

observed in 7 out of 10 cases when comparing to the best-known results from literature, including

an instance for which the first feasible solution has been reported (W23 with a gap of 1.76%).

In the instances Zuck medium, W23 and Zuck large the total time spent to find the feasible

solution for w = 2, ∆ = 2 was 26,006, 26,592 and 29,510 seconds, respectively. The remaining

time to complete 36,000 seconds time limit was trying to find a feasible solution for the parameters

w = 4, ∆ = 4.

Appendix C. Detailed results of the proposed heuristic with w ≥ 1 and ∆ = 1

Similarly to Appendix B, Table 7 shows the detailed results for each of the MineLib instances

with w ≥ 1 and ∆ = 1.

When comparing with the performance obtained from the proposed heuristic with w = ∆,

the results show a significant improvement on the instance W23 for w = 2, ∆ = 1 and s = 0.5,

with a gap of 0.74% (i.e. a 58% gap reduction). Other instances as Newman1, Marvin, SM2 and

McLaughlin lim present similar gaps, but a poorer performance is obtained for instances Zuck

small, KD and McLaughlin (respectively 30%, 79% and 243% higher gap).

Similar to the case with parameters w = ∆, there is a significant variability in both size and

solving-time among the subproblems. Since in this case more iterations have to be performed, for

those instances where the gaps are similar (Newman1, Marvin, SM2 and McLaughlin lim) the total

time is longer.

For the instances Zuck medium and Zuck large a first intent was done with parameters w = 1,

∆ = 1. As the time spent was below the time limit and the optimality gap was greater than

1%, a new intent has been done with w = 2,∆ = 1. As the time limit of 36,000 seconds was

reached the gap being still greater than 1%, the result of the previous intent (i.e., with parameters

w = 1,∆ = 1) has been retained.

As an attempt to find better solutions given the time available, in the instances SM2,

McLaughlin lim and McLaughlin a new iteration was performed trying to improve the available

gap, which was already less than 1%. The results are shown in Table 7. For SM2 the solution found

for w = 3, ∆ = 1 results in a higher gap (0.21%). In the case of McLaughlin lim the solution

found is the same as the solution with parameters w = 2, ∆ = 2 (0.25%), but taking twice as long.

Finally, for the instance McLaughlin the solution (gap 0.24%) is worse than the one obtained with

parameters w = 2, ∆ = 2 (gap 0.07%) and takes almost twice as long.

19

Table 6: Detailed results of the proposed heuristic with w = ∆ (values in bold correspond to new best-known solutions)

Instance Results Subproblems

Name w = ∆ s Gap (%)
Cumulative

Time (s)

smallest average largest

#blocks #precs #vars #constrs #blocks #precs #vars #constrs #blocks #precs #vars #constrs

Newman1

2 0.5 1.37 7 296 903 1,776 3,294 643 2,333 3,855 7,886 989 3,762 5,934 12,477

4 0.5 1.27 17 1,059 3,922 12,708 27,353 1,059 3,922 12,708 27,353 1,059 3,922 12,708 27,353

6 0.5 1.32 31 1,059 3,922 19,062 41,559 1,059 3,922 19,062 41,559 1,059 3,922 19,062 41,559

Zuck small

2 2.5 8.03 275 1,270 6,950 7,620 20,388 1,738 12,534 10,428 33,766 3,047 35,070 18,282 85,383

4 0.5 7.02 829 1,541 9,166 18,492 54,307 2,351 19,395 28,209 103,454 3,047 35,070 36,564 173,813

6 0.5 0.77 6,406 1,807 9,166 32,526 85,739 3,134 30,382 56,418 235,600 4,304 42,955 77,472 330,922

KD

2 1.5 4.90 120 658 2,028 3,948 7,350 2,500 25,697 14,999 63,898 3,675 49,332 22,050 117,043

4 0.5 6.69 885 2,173 13,148 26,076 76,503 4,065 47,914 48,780 236,380 6,398 90,644 76,776 432,962

6 0.5 0.38 5,240 3,830 29,394 68,940 241,486 6,077 75,723 109,386 557,659 8,324 122,052 149,832 873,832

Zuck medium 2 1.5 4.99 36,000 1,913 10,255 11,478 30,083 5,425 123,076 32,549 273,284 13,586 468,845 81,516 1,005,628

Marvin

2 2.5 8.95 225 1,151 3,613 6,906 13,454 1,543 7,927 9,258 23,577 2,723 22,126 16,338 57,875

4 0.5 5.14 591 1,244 3,613 14,928 28,152 2,129 12,581 25,548 73,759 2,914 22,126 34,968 118,473

6 0.5 0.79 3,010 1,244 3,613 22,392 42,850 2,839 19,300 51,096 164,079 4,065 27,426 73,170 233,685

W23 2 0.5 1.76 36,000 14 4 140 92 7,808 61,489 78,083 162,036 17,591 149,678 175,910 382,389

Zuck large 2 1.5 2.61 36,000 4,583 13,401 27,498 49,725 9,460 65,324 56,758 177,953 14,517 134,761 87,102 342,115

SM2 2 1.5 0.09 1,704 1,188 1,107 7,128 8,162 1,770 1,607 10,623 12,074 2,560 2,224 15,360 17,256

McLaughlin lim 2 0.5 0.25 6,063 846 2,980 5,076 10,194 15,824 266,664 94,945 612,453 28,880 681,500 173,280 1,507,404

McLaughlin 2 0.5 0.07 16,116 13,952 114,911 83,712 305,916 22,594 365,484 135,562 843,939 35,115 828,562 210,690 1,832,703

20

Table 7: Detailed results of the proposed heuristic with w ≥ 1 and ∆ = 1

(values in bold correspond to new best-known solutions)

Instance Results Subproblems

Name w s Gap (%)
Cumulative

Time (s)

smallest average largest

#blocks #precs #vars #constrs #blocks #precs #vars #constrs #blocks #precs #vars #constrs

Newman1

1 1.5 1.27 6 287 986 861 1,564 643 2,345 1,929 3,635 989 3,762 2,967 5,744

2 0.5 1.56 19 288 1,015 1,728 3,478 643 2,354 3,860 7,933 989 3,762 5,934 12,477

3 0.5 1.47 46 287 979 2,583 5,245 665 2,423 5,985 12,600 1,059 3,922 9,531 20,250

4 0.5 1.27 68 286 985 3,432 7,102 666 2,397 7,992 16,930 1,059 3,922 12,708 27,353

6 0.5 1.32 92 1,059 3,922 19,062 41,559 1,059 3,922 19,062 41,559 1,059 3,922 19,062 41,559

Zuck small

1 3.5 12.18 140 689 2,044 2,067 3,426 1,197 7,850 3,592 10,249 3,047 35,070 9,141 41,168

2 2.5 7.23 414 771 2,449 4,626 8,761 1,617 10,721 9,700 29,532 3,047 35,070 18,282 85,383

3 1.5 4.85 871 780 2,439 7,020 13,569 2,004 14,423 18,037 59,314 3,047 35,070 27,423 129,598

4 0.5 2.55 2,194 631 1,639 7,572 13,513 2,341 18,382 28,095 99,298 3,319 35,070 39,828 173,813

6 0.5 1.00 17,078 537 1,383 9,666 17,451 3,342 31,970 60,162 248,666 4,770 47,196 85,860 364,290

KD

1 2.5 8.24 113 943 3,789 2,829 5,677 2,387 24,501 7,160 29,276 3,980 56,709 11,940 64,671

2 1.5 4.58 291 612 1,907 3,672 6,878 2,598 26,044 15,591 65,084 4,265 60,102 25,590 141,533

3 0.5 0.68 2,419 573 1,825 5,157 10,065 3,248 35,632 29,228 132,883 4,883 70,325 43,947 250,045

Zuck medium 1 2.5 9.23 36,000 993 7,819 2,979 9,809 4,407 95,142 13,222 103,961 13,586 468,845 40,758 496,021

21

Instance Results Subproblems

Name w s Gap (%)
Cumulative

Time (s)

smallest average largest

#blocks #precs #vars #constrs #blocks #precs #vars #constrs #blocks #precs #vars #constrs

Marvin

1 3.5 11.75 137 277 441 831 999 1,099 5,198 3,298 7,400 2,723 22,126 8,169 27,576

2 2.5 7.94 375 273 431 1,638 2,235 1,421 6,754 8,525 20,621 2,723 22,126 16,338 57,875

3 1.5 3.75 739 277 441 2,493 3,551 1,839 9,655 16,551 43,690 2,723 22,126 24,507 88,174

4 0.5 2.24 1,330 276 439 3,312 4,808 2,149 12,033 25,784 71,784 3,217 22,126 38,604 118,473

6 0.5 0.77 9,652 277 441 4,986 7,379 3,066 20,168 55,189 173,157 4,541 31,194 81,738 264,385

W23
1 1.5 11.00 28,133 295 453 1,475 1,063 4,290 30,002 21,452 38,597 16,601 149,678 83,005 182,894

2 0.5 0.74 33,001 95 128 950 745 6,934 52,676 69,336 140,045 22,281 199,195 222,810 509,823

Zuck large 1 2.5 2.67 36,000 2,809 11,929 8,427 17,551 7,694 51,749 23,083 67,141 14,484 134,604 43,452 163,576

SM2

1 2.5 4.09 1,848 384 363 1,152 1,135 2,133 1,992 6,400 6,263 2,756 2,573 8,268 8,026

2 1.5 0.09 1,876 1,188 1,107 7,128 8,162 1,770 1,607 10,623 12,074 2,560 2,224 15,360 17,256

3 0.5 0.21 1,977 1,441 1,353 17,292 21,279 3,129 2,874 37,548 45,930 4,222 3,815 50,664 61,718

McLaughlin lim
1 0.5 0.87 2,536 846 2,980 2,538 4,674 8,521 124,831 25,562 141,875 15,861 371,169 47,583 402,893

2 0.5 0.25 10,999 560 2,029 3,360 6,862 15,460 242,441 92,760 562,185 28,880 681,500 173,280 1,507,404

McLaughlin
1 0.5 0.85 8,374 3,139 10,806 9,417 17,086 11,297 156,372 33,891 178,968 19,047 378,204 57,141 416,300

2 0.5 0.24 24,948 12,958 114,385 77,748 304,584 22,600 356,467 135,597 825,935 37,699 851,514 226,194 1,891,527

22

References

Bienstock, D. and Zuckerberg, M. (2010). Solving lp relaxations of large-scale precedence constrained problems. In

International Conference on Integer Programming and Combinatorial Optimization, pages 1–14. Springer.

Bley, A., Boland, N., Fricke, C., and Froyland, G. (2010). A strengthened formulation and cutting planes for the

open pit mine production scheduling problem. Computers & Operations Research, 37(9):1641–1647.

Boyd, E. (1993). Polyhedral results for the precedence-constrained knapsack problem. Discrete Applied

Mathematics, 41(3):185–201.

Caccetta, L. and Hill, S. (2003). An application of branch and cut to open-pit mine scheduling. Journal of Global

Optimization, 27:349–365.

Chicoisne, R., Espinoza, D., Goycoolea, M., Moreno, E., and Rubio, E. (2012). A new algorithm for the open-pit

mine production scheduling problem. Operations Research, 60(3):517–528.

Chiles, J. and Delfiner, P. (2009). Geostatistics: modeling spatial uncertainty, volume 497. John Wiley & Sons.

Cullenbine, C., Wood, R., and Newman, A. (2011). A sliding time window heuristic for open pit mine block

sequencing. Optimization Letters, 5(3):365–377.

Espinoza, D., Goycoolea, M., Moreno, E., and Newman, A. (2013). Minelib: a library of open pit mining problems.

Annals of Operations Research, 206(1):93–114.

Hochbaum, D. (2008). The pseudoflow algorithm: A new algorithm for the maximum-flow problem. Operations

Research, 56(4):992–1009.

Ibarra, O. and Kim, C. (1978). Approximation algorithms for certain scheduling problems. Mathematics of

Operations Research, 3(3):197–204.

Jélvez, E., Morales, N., and Askari-Nasab, H. (2018). A new model for automated pushback selection. Computers

& Operations Research.

Jélvez, E., Morales, N., and Nancel-Penard, P. (2019). Open-pit mine production scheduling: Improvements to

minelib library problems. In Proceedings of the 27th International Symposium on Mine Planning and Equipment

Selection-MPES 2018, pages 223–232. Springer.

Jélvez, E., Morales, N., Nancel-Penard, P., Peypouquet, J., and Reyes, P. (2016). Aggregation heuristic for the

open-pit block scheduling problem. European Journal of Operational Research, 249(3):1169–1177.

Johnson, T. (1968). Optimum open-pit mine production scheduling. PhD thesis, Operations Research Department,

University of California, Berkeley.

Kenny, A., Li, X., Ernst, A., and Thiruvady, D. (2017). Towards solving large-scale precedence constrained

production scheduling problems in mining. In Proceedings of the Genetic and Evolutionary Computation

Conference, pages 1137–1144. ACM.

Lambert, W., Brickey, A., Newman, A., and Eurek, K. (2014). Open-pit block-sequencing formulations: a tutorial.

Interfaces, 44(2):127–142.

Lambert, W. and Newman, A. (2014). Tailored lagrangian relaxation for the open pit block sequencing problem.

Annals of Operations Research, 222(1):419–438.

Lamghari, A., Dimitrakopoulos, R., and Ferland, J. (2015). A hybrid method based on linear programming and

variable neighborhood descent for scheduling production in open-pit mines. Journal of Global Optimization,

63(3):555–582.

Lerchs, H. and Grossmann, H. (1965). Optimal design of open-pit mines. Transactions C.I.M., 58:47–54.

Liu, S. and Kozan, E. (2016). New graph-based algorithms to efficiently solve large scale open pit mining

optimisation problems. Expert Systems with Applications, 43:59–65.

Moreno, E., Espinoza, D., and Goycoolea, M. (2010). Large-scale multi-period precedence constrained knapsack

problem: a mining application. Electronic Notes in Discrete Mathematics, 36:407–414.

23

Picard, J.-C. (1976). Maximal closure of a graph and applications to combinatorial problems. Management Science,

22(11):1268–1272.

Ramazan, S. (2007). The new fundamental tree algorithm for production scheduling of open pit mines. European

Journal of Operational Research, 177(2):1153–1166.

Samavati, M., Essam, D., Nehring, M., and Sarker, R. (2017). A methodology for the large-scale multi-period

precedence-constrained knapsack problem: an application in the mining industry. International Journal of

Production Economics, 193:12–20.

Samavati, M., Essam, D., Nehring, M., and Sarker, R. (2018). A new methodology for the open-pit mine production

scheduling problem. Omega, 81:169–182.

Shishvan, M. S. and Sattarvand, J. (2015). Long term production planning of open pit mines by ant colony

optimization. European Journal of Operational Research, 240(3):825–836.

Underwood, R. and Tolwinski, B. (1998). A mathematical programming viewpoint for solving the ultimate pit

problem. European Journal of Operational Research, 107(1):96–107.

24

	Introduction
	Related work
	The Precedence Constrained Production Scheduling Problem
	A hybrid heuristic based on rolling horizon and block preselection
	Rolling horizon
	Block preselection
	Description of the hybrid heuristic algorithm
	Parameters setting
	Numerical example

	Computational results
	Computational setting
	Results and discussion
	Added value from the block preselection procedure

	Conclusions

