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Abstract

Traditional practice in mine planning often relies on estimation techniques
that fail to account for the intrinsic uncertainty of geology and grades, which
may have significant consequences in the mine operation. Dealing with this
uncertainty has been a major topic in the last years, where different algo-
rithms and stochastic optimization models have been proposed to tackle this
issue. However, the increasing complexity of these stochastic models and the
use of several simulations to represent the deposit variability impose a com-
putational challenge in terms of resolution times, making them difficult to
apply in large data or complex mining operations. In this paper we explore
the antithetic random fields approach as a variance reduction technique, to
solve a stochastic short-term mine planning problem, aiming to reduce the
number of simulations required to obtain a reliable NPV value. The reliabil-
ity of the result is measured by the variance of the NPV when the problem
is optimized with different sets of realizations. Our results show that this
technique produces a significant variance reduction in the inference of the

Email addresses: gnelis@delphoslab.cl (Gonzalo Nelis S.),
julian.ortiz@queensu.ca (Julián M. Ortiz), nelson.morales@amtc.cl (Nelson
Morales V.)

1Authorship statement: Gonzalo Nelis developed the methodology and case studies
in the paper. Julian M. Ortiz proposed the methodology and advised Mr. Nelis dur-
ing the development of this work. Nelson Morales proposed the stochastic optimization
formulation, and provided the corresponding explanations for the optimization model.

Preprint submitted to Elsevier April 1, 2019



expected NPV value in the stochastic problem for a copper deposit applica-
tion, generating a lower dispersion with a smaller sample size, compared to
traditional simulation techniques.
Keywords: Geostatistics, Simulation, Variance Reduction, Mine Planning

1. Introduction

Uncertainty has been a major challenge in the mining industry. Almost
every decision taken in a mining project has to deal with uncertainty in some
way. In the last decades there has been an increasing interest in addressing
this uncertainty with new techniques that not only account for a single esti-
mate of the uncertain attributes, but a wide range of possible scenarios of the
real deposit through geostatistical simulations. This technique has allowed
the planner to make decisions considering how a fixed production plan will
respond to different scenarios. But a different question is how to consider this
uncertainty during mine planning optimization. This is often addressed with
stochastic optimization techniques, which assist the mine planner to decide
the best strategy under uncertainty of the parameters such as grade, cost,
price, etc. However, the incorporation of uncertainty requires a large num-
ber of grade scenarios to represent the true variability of the deposit, which
makes the problem prohibitively large to solve efficiently. In this paper we
tackle this issue answering the question: Can the number of geostatistical
simulations in the optimization problem be reduced, without compromising
the representation of the deposit’s true variability? To answer this question,
we use a variance reduction technique applied to geostatistical simulation,
and we prove its effectiveness in a stochastic optimization problem.

In the natural resources industry, one approach to reduce the number of
simulations is the selection of a small set of simulations that represent the
characteristics of a larger set. The final number of scenarios is fixed, based on
the computational runtime of the model studied, and the challenge is finding
the best subset from the larger set, which minimize some predefined distance
measure between both sets based on a relevant attribute of the simulations.
Heitsch and Römisch (2003) applied this approach, focusing their work in a
heuristic to find the best subset of realizations from the larger set, where they
add or subtract a single scenario sequentially until they achieve a satisfactory
result. This was also used in power management problems (Dupačová et al.
(2003), Heitsch and Römisch (2009), Gröwe-Kuska et al. (2003)). Armstrong
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et al. (2013) used this methodology in a stochastic mine planning problem,
but the sequential approach proposed by Heitsch and Römisch (2003) did not
perform as expected, delivering a subset with a value 50% off from the true
optimal for a small case study. They proposed a different approach instead,
based on a random search procedure considering a proxy variable for each
scenario as the total tonnage of ore for a range of cut-off grades, used to
select the smaller set. It was tested in a real deposit with promising results:
the value computed using 12 scenarios was 1% off the value computed with
100.

Scheidt and Caers (2009a,b) present a methodology to select realizations
from a large set based on a clustering method on a projection over a reduced
space, using kernels and specific distances to measure similarity between sim-
ulations. The application, requires, however, having access to a large set of
simulations of petrophysical properties before selecting the subset to post
process for history matching in petroleum applications. Other authors have
approached the problem by defining a proxy variable that is linked to the
performance response, and devised a ranking of the realizations to then se-
lect a small number to characterize the uncertainty in the response (Deutsch
and Srinivasan (1996); McLennan and Deutsch (2005)). A typical approach
consists on processing only a few key scenarios linked to the percentiles 10,
50 and 90, as a way of representing the expected variability of the response
(Deutsch (2007), Pereira et al. (2017)). It should be noted that the proxy
variable must have a monotonic behavior with respect to the transfer func-
tion.

Another approach has been the implementation of variance reduction
techniques. These are procedures to reduce the estimate variance without
increasing the number of simulations or, conversely, achieving the same esti-
mate variance with fewer simulations tested. This usually requires modifying
the simulation algorithm, in order to sample the probability space with fewer
runs. A complete review of these techniques can be found in Cheng (1986),
James (1985) and Kleijnen et al. (2010). This approach does not require a
large number of scenarios in the first place, so they can be used to generate
the desired number of scenarios directly, which leads to further reduction of
the computational complexity when the simulation algorithm is complex.

A particular methodology using antithetic variates was proposed by Guthke
and Bárdossy (2012). Their work was based on an extension of this technique
to a sequential simulation algorithm. They showed that this implementation
can reduce the estimate variance up to 20% of the conventional Monte Carlo
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methods in two stochastic hydrogeology applications.
In this paper, we develop an implementation of the antithetic random

fields proposed by Guthke and Bárdossy (2012) in a geostatistical simulation
algorithm, applied to a mine planning under uncertainty problem.

Mine planning under uncertainty is the process of making the mine plan-
ning decision considering uncertainty in the parameters such as prices, grade,
etc. A complete review of operations research in mine planning can be found
in Newman et al. (2010).

Uncertainty has been incorporated into the mine planning process by
different means. Of particular interest in this work is the stochastic pro-
gramming approach, which takes into account different decision stages in a
stochastic program, to obtain a mining sequence considering the flexibility
of changing some of these decisions based on new information. Among these
works are a multistage approach proposed by Boland et al. (2008) and a
two-stage method proposed by Moreno et al. (2017).

In this paper we test the variance reduction technique implementation in
a two-stage stochastic programming model that evaluates the timing of the
blasthole grade information in short-term mine planning, and its effect on
the NPV considering grade uncertainty.

2. Methods

2.1. Antithetic Variates Technique
The implementation proposed in this paper is an extension of the anti-

thetic variates technique, which is based on generating scenarios with neg-
ative correlation (Hammersley and Morton (1956)). Consider the example
of estimating the expected value of some transfer function f , Y = E[f(X)],
and two outcomes of a random simulation: f(X1) = Y1 and f(X2) = Y2. An
unbiased estimator using these two values is:

YAV = Y1 + Y2

2 Var[YAV ] = σ2 + Cov[Y1, Y2]
2 (1)

If both outcomes are independent, the value of the covariance is zero
and this estimator is equivalent to the conventional Monte Carlo estimation.
However, if the correlation between both values is negative, the covariance is
negative and then the variance of the estimator would yield a lower result.
This is the basic premise of the antithetic variates method: negatively corre-
lating each scenario to achieve a lower estimation variance in the response.
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The negative correlation is then achieved by modifying the simulation process
used to obtain the sample. It is relevant to notice that the transfer function
must be monotonic to preserve the negative correlation of the scenarios and
obtain a lower variance in the estimation of the response.

For the current application, we are interested in the expected value of
the net present value. The method can be applied in more general cases, to
characterize any parameter of the full distribution of possible outcomes (e.g.
min, max, quartiles, interquartile range, median, etc.), although the impact
of this variance reduction technique for these parameters is not studied in
the present work.

To apply this technique in geostatistics, we will use the Sequential Gaus-
sian Simulation Algorithm (Deutsch and Journel (1998)), since the appli-
cation of antithetic variates in this context is straightforward and will be
addressed in the next section.

2.2. Antithetic Random Fields
In Sequential Gaussian Simulation Algorithm, a standard Gaussian ran-

dom variable is simulated in a spatial grid, where each node of this grid is
visited sequentially in a random order, performing a simple kriging estima-
tion using the previously simulated nodes and the normal scores of the true
data to condition its value, and drawing a random number from a Gaus-
sian distribution with mean and variance given by the kriging estimate and
variance, respectively, to obtain the final simulated value.

Traditionally, to generate m scenarios, this method must be repeated
independently m times, with different random paths and different random
numbers for the simulation stage. Our proposal is the application of the
methodology proposed by Guthke and Bárdossy (2012), imposing a corre-
lation on these random numbers: the same node will be simulated using
negatively correlated Gaussian random numbers in different scenarios with a
fixed random path.

This methodology can be applied to an arbitrary number of scenarios,
where all of them exhibit negative correlation. For m scenarios with n nodes,
m standard Gaussian random vectors of size n are generated and a partic-
ular correlation matrix between them is imposed. Since we desire to obtain
a constant negative correlation among every scenario, consider matrix (2)
as a correlation matrix between these m vectors with pairwise correlation
coefficient α.
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Cm =


1 α · · · α
α 1 · · · α
... ... . . . ...
α α · · · 1

 (2)

Since we want the lowest possible correlation coefficient α, and considering
that matrix (2) has to be a valid correlation matrix, we get that this value
is constrained by relation (3) (Guthke and Bárdossy (2012)):

α ≥ − 1
m− 1 (3)

From Eq. (3), if the number of scenarios we want to correlate increases,
α gets closer to zero, since the pairwise correlation must decrease to get a
negative correlation among every scenario.

Then, to impose this correlation matrix to m standard Gaussian random
vectors of size n, the following algorithm must be followed:

1. The correlation coefficient α is calculated based on relation (3) and the
correlation matrix (2) is generated.

2. A matrix B is found such that BBᵀ = Cm. This could be achieved
using a Cholesky decomposition technique.

3. Then, for each node to simulate i ≤ n:
• A tuple of m standard Gaussian random numbers is generated,

gi
m.

• A vector zi
m = Bgi

m is calculated
4. Finally, a matrix of Gaussian random numbers is constructed, R =

(zi
m)ᵀ where each row i is the vector zi

m transposed. This matrix has
n rows, one for each node to simulate, and m columns, one for each
scenario, and the correlation matrix between the columns is Cm.

Then, to get a negative correlation among m scenarios, the following
Antithetic Sequential Gaussian Simulation algorithm must be implemented:

For each m-tuple of scenarios:

1. Random Path: A random path is generated.
2. Random Numbers: The matrix of random numbers R is generated

based on the previous algorithm.
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3. For each scenario s of this m-tuple:
(a) Simple Kriging: Visit each node i from scenario s according to

the random path and perform a simple kriging estimation using
nearby data and any previously simulated nodes.

(b) Simulate Value: Assign the value of this node as:

Y (xi) = Y KS(xi) + σKS(xi)Ri,s (4)

The main difference between the conventional sequential Gaussian simu-
lation algorithm and this antithetic variant is that the random numbers are
calculated beforehand. Also, the random path is fixed for each m-tuple since
the same node must be simulated in the same order to achieve the negative
correlation between scenarios.

2.3. Short-term stochastic mine planning problem
To evaluate the impact of the antithetic random fields in mine planning

we will use a two-stage stochastic model proposed in Nelis and Morales (2017)
that aims to address the short-term mine planning problem evaluating the
impact on the economic value of getting the blasthole grade information in
advance. In a two-stage stochastic optimization problem, decision variables
are split into two groups. The first group, or first stage variables, is made
of variables that need to be equal in all possible scenarios. The second
group, resource variables, may depend on the scenario, i.e., they need to
be compatible with first stage decisions, but can adapt depending on actual
values of the uncertain parameters.

In the setting that we propose, we have a set of periods T , and consider
a time-period t∗ ∈ T which defines the moment at which information about
the BH arrived, which we consider the moment at which the actual grades
of the blocks are known. Decisions up to that point can only use average
information for the uncertain grades, but after that point they can adapt
to them. This is exemplified in Fig. 1, where on the left, we have depicted
a conceptual scheduling up to period t∗ = 4. After that period, multiple
possible schedules are possible (as many as grade scenarios are considered).

Formally, the problem is described as follows: let B be the set of mining
blocks, D the set of destinations for each block b ∈ B, T the set of periods
and S the set of blasthole grade scenarios (with |S| the cardinality of such
set). As it was stated before, t∗ is the period when the blasthole information
is available, with T ∗	 as the set of periods until t∗, and T ∗⊕ as the set of
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Figure 1: Conceptual representation of an adaptive schedule for t∗ = 4. To keep the
example simple, we have colored the blocks by extraction period and not destination.

periods after t∗. Let vbtds be the profit for sending block b to destination
d at period t in scenario s, and v̄btd be the average profit across scenarios.
The objective is to maximize the schedule’s NPV and the decisions variables
are separated according to the blasthole information arrival: the first stage
decision variable, ybtd, equals 1 if block b ∈ B is sent to destination d ∈ D at
period t ∈ T ∗	 and 0 otherwise; and the second stage variable, xbtds, equals 1
if block b ∈ B is sent to destination d ∈ D at period t ∈ T ∗⊕ in scenario s ∈ S,
and 0 otherwise. Then, a short version of the two-stage stochastic model is
defined as:
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sii

max
∑
b∈B

∑
d∈D

∑
t∈T ∗

	

ybtd v̄btd + 1
|S|

∑
s∈S

∑
b∈B

∑
d∈D

∑
t∈T ∗

⊕

xbtds vbtds (5)

such that
∑
d∈D

∑
t∈T ∗

	

ybtd +
∑
d∈D

∑
t∈T ∗

⊕

xbtds = 1 ∀s ∈ S, b ∈ B (6)

Ax + By = h ∀s ∈ S (7)

Eq. (5) is the objective function, which maximizes the expected NPV,
Eq. (6) states that each block can only be extracted once, and Eq. (7)
represents the rest of constraints for a scheduling problem such as capacity,
precedence or blending, with A, B matrices to form the constraints, h the
corresponding right-side vector and x, y the vectors of decision variables. A
complete version of the model can be found in Nelis and Morales (2017).

The results obtained by the model depends on the set of grade scenarios,
S. On one hand, we need as many scenarios as possible to obtain a reliable
NPV result that considers the true variability of the deposit but, on the other
hand, each scenario adds variables and constraints to the problem, making
it harder to solve. Therefore, this is a suitable optimization problem to test
the proposed variance reduction technique.

2.4. Convergence Analysis
Comparison between antithetic and conventional simulation methodolo-

gies is based on analyzing the variance between solutions achieved in the
optimization problem. Recall that each optimization problem is solved using
a number |S| of realizations (see Section 2.3). The optimized NPV in prob-
lem (5) represents the expected value of the NPVs obtained over different
realizations. Our aim is to optimize such NPV with the smallest number of
realizations for a given precision. If a number of scenarios |S| is sufficient, the
NPV obtained should converge to the same value for any set of |S| realiza-
tions, or equivalently, the NPV’s obtained using different sets of |S| scenarios
should have a low variance around the true optimum value. Therefore, the
dispersion of the result over different sets of |S| scenarios is a measure of the
convergence in the stochastic problem.

Thus, the procedure to compare the use of conventional and antithetic
realizations is:

1. A large number of realizations is generated with each method:
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(a) For the conventional realizations, 600 scenarios are generated.
(b) For the antithetic realizations, the same number of scenarios (600)

is generated in sets of m realizations. Firstly, 300 sets of m = 2
antithetic random fields are generated, which are noted ARF2.
Secondly, 60 sets ofm = 10 antithetic random fields are generated,
noted ARF10.

2. The dispersion resulting from solving problem (5) as a function of the
type of simulation and their degree of correlation is analyzed. Problem
(5) is solved 30 times using samples of size |S| = 2, 10 and 20 realiza-
tions. Depending on how the realizations are generated (conventional,
ARF2 or ARF10) individual realizations are selected within each sam-
ple without replacement. This is explained next:
(a) For the conventional realizations, 30 sets of |S| = 2 randomly

selected realizations are first used. The process is repeated with
30 sets of |S| = 10 and then with sets of |S| = 20 scenarios.

(b) For the case of ARF2, 30 sets of paired realizations are selected for
the case of samples of size |S| = 2. For samples of size |S| = 10,
each one of the 30 cases optimized is made of 5 sets of ARF2.
Similarly, for samples of size |S| = 20, each one of the 30 cases is
made of 10 sets of ARF2.

(c) For the case of ARF10, 30 pairs of realizations belonging to the
same set of ARF10 are selected for the case of samples of size
|S| = 2. For samples of size 10, each one of the 30 cases optimized
is made of one set of ARF10. Similarly, for samples of size 20,
each one of the 30 cases is made of 2 sets of ARF10.

3. A statistical analysis is performed over the 30 optimal values of the ob-
jective function obtained in each case. The mean value is an estimator
of the true objective function value, while the variance is a measure
of the precision of this estimation. Therefore, the performance of the
antithetic random fields technique can be measured in terms of the
variance obtained in this procedure compared to the variance of con-
ventional scenarios.

Table 1 shows a summary of how the cases were generated. Sample size
|S| represents how many realizations are used to solve each one of the 30
instances of problem (5). The selection of realizations for each sample size
|S| depends on how the realizations are generated (conventional, ARF2 or
ARF10), as the table indicates.
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Table 1: Cases for convergence analysis.

Sample Size
|S| ARF2 ARF10 Conventional Total number

of realizations used

2 1 set 2 realizations randomly
obtained from 1 set

2 realizations
selected randomly 60

10 5 sets 1 set 10 realizations
selected randomly 300

20 10 sets 2 sets 20 realizations
selected randomly 600

3. Results

3.1. Conditional and non-conditional simulation
The results of this variance reduction technique with and without con-

ditional data are presented, to verify the effect of correlating the random
numbers among different scenarios. The non-conditional simulation is per-
formed in a regular grid with 1m separation between nodes, in a domain
of 250 × 250 × 10m3 and a spherical variogram model. For the conditional
simulation, real data from a copper deposit located in Chile was used, with a
Gaussian transformation prior to the simulation process. Some basic statis-
tics of the copper content are shown in Table 2.

Table 2: Drillhole dataset 1

Data points 2376
Average 1.05 %
Minimum 0.12 %
Maximum 7.24 %
Standard deviation 0.64 %

Fig. 2 presents a plan view of the simulated domain without conditional
data. Zones with high value in one scenario present a low simulated value
in the other, showing the effect of the negative correlation in the random
numbers. The large scale structures presented in both simulations are exactly
the same since the random path and the variogram model are unaltered. On
the other hand, Fig. 3 presents a plan view of the simulated deposit with
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(a) Simulation 1/2 (b) Simulation 2/2

Figure 2: Pair of antithetic simulations (α = −1)

conditional data. The effect of these data is clear: both scenarios present
zones with similar values and structures, in response to the hard data used
in the simulation, specially in the center of the deposit where the drillhole
information is denser. However, around the corners of the images, reversed
structures can be seen since the conditioning effect is weaker with fewer data
points.

More information can be gathered calculating the experimental correla-
tion coefficient of every scenario. Fig. 4 shows the average of 100 pairs of
conventional and antithetic simulations obtained with different number of
scenarios simultaneously correlated (m). For the simulation without condi-
tional data, the correlation coefficient is close to zero for the conventional case
since every scenario is independent, while the antithetic simulations present
a lower correlation coefficient that match the value obtained by Equation
(3), showing that the Gaussian sequential algorithm preserves the random
number correlation. The behavior seen for the conditional case is similar:
the antithetic random fields present a lower correlation coefficient than the
conventional simulations, and this coefficient increases with the number of
scenarios correlated simultaneously. However, the value of the coefficient is
positive even when the random numbers exhibit negative correlation, show-
ing the effect of the conditional data across every scenario. Even with the
effect of these data, the scenarios generated by the antithetic random fields
technique still show a lower correlation than conventional technique, proving
that the proposed methodology can be used with conditional data as well.
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(a) Drillhole Data (b) Simulation 1/2 (c) Simulation 2/2

Figure 3: Pair of antithetic simulations (α = −1) and plan view of the conditional data.

3.2. Short-term stochastic mine planning
3.2.1. Case Study

The model described in Section 2.3 was used to study the convergence
rate of the proposed variance reduction technique. Since the model is suitable
for the short-term scheduling problem, a single bench of a real deposit was
used, consisting of 1547 blocks with a total tonnage 9.57 Mton at an average
copper grade of 0.33%. The main parameters for the schedule are shown
in Table 3. For this deposit, the methodology described in Section 2.4 was
implemented.

Table 3: Scheduling parameters

Price 2.5 US$/lb
Recovery 85 %
Mining Cost 1.5 US$/ton
Processing Cost 10 US$/ton
Selling Cost 0.3 US$/lb
Discount Rate 10 %
Mining Capacity 2.1 MTon/month
Processing Capacity 1.2 MTon/month
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Figure 4: Comparison of correlation coefficient for conventional and antithetic random
fields

3.2.2. Scheduling results
The results are presented in Fig. 5. The middle line inside the box repre-

sents the average value of 30 instances calculated for each type of simulation,
the box size represents two times the standard deviation of these instances
and the upper and lower whiskers represent the maximum and minimum
values.

It can be seen that the mean converges to a value of 19.4 MUS$ for the
largest sample size (|S| = 20) for every simulation type. Smaller sample
sizes (|S| = 2 and |S| = 10) show a more erratic behavior, especially for
the sample size of |S| = 2 where the mean value is always higher than 20
MUS$. Since the real value of the objective function is unknown for this type
of problem, we should expect that every type of simulation converges to the
same value. For this specific case, this holds true for the largest sample size
(|S| = 20), where the mean values across every type of simulation have a
maximum difference of 0.4%. For the smaller sample sizes, this difference is
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Figure 5: Convergence of the value for the stochastic problem

larger (2.9% for |S| = 2 and 1.7% for |S| = 10), but not significant for this
case study.

Since every type of simulation converges to a similar value, the standard
deviation is a measure of the precision of this estimation. As it was expected,
the larger the sample size |S|, the lower the standard deviation for every
case. However, for the same sample size, conventional simulation always
produces the highest dispersion. This indicates that the proposed algorithm
achieves a variance reduction for this optimization problem. The magnitude
of this reduction is variable, as it can be seen in Table 4. Specifically, with a
sample size |S| = 2, ARF2 achieves a reduction of 50% from the conventional
standard deviation. For |S| = 10, ARF10 achieves a reduction of 55%, and
for |S| = 20, the reduction is 62%.

Table 4: Standard deviation for different cases

Sample size |S| ARF2 ARF10 Conventional
2 1 810 605 3 076 323 3 618 671
10 729 879 671 042 1 499 136
20 543 159 469 921 1 227 579
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It is relevant to notice that the simulation type that achieves the highest
reduction depends on the sample size, |S|. For |S| = 2, the highest reduction
is achieved by ARF2. Moreover, the standard deviation obtained for ARF10
and conventional are similar. This is explained by the antithetic random
fields algorithm and the sample size used: for a sample size of |S| = 2,
each instance using ARF2 is generated with one complete tuple, while for
ARF10 each instance is generated using 2 random elements of a larger tuple.
Therefore, the correlation coefficient between these two scenarios is lower for
ARF2 compared to ARF10, which is reflected in the lower standard deviation
of the optimization problem. These results indicate that the variability of
the optimal values obtained in the optimization problems is reduced when
realizations are generated maximizing their negative correlation.

In the case of |S| = 10 and |S| = 20 using ARF2, each sample is made
of 5 and 10 independently generated sets of realizations, with no control of
the correlation among different sets. Using ARF2 still improves the result as
compared to using conventional realizations. However, given that realizations
from different sets of ARF2 must be combined to generate the sample of size
|S| = 10 or |S| = 20, the reduction is not as good as if the realizations were
generated in a single set of antithetic random fields

Considering different sample sizes, using ARF10 with a sample size of
|S| = 10 achieves a lower variance than conventional simulations with a sam-
ple size of |S| = 20. Therefore, fewer antithetic simulations are needed to
achieve the same precision as conventional simulations. Since the stochastic
optimization problems in mine planning are highly demanding in computa-
tional resources, using fewer scenarios to represent the grade variability of
the deposit could lead to being able to solve more complex problems in terms
of deposit size, number of periods or destinations, making this kind of models
useful in real-life applications.

This kind of analysis raises the question of the minimum number of sce-
narios necessary to achieve a good representation of the deposit. As it can
be seen in Fig. 5, the difference between the maximum and minimum value
for a given sample size can be significant. For our largest sample size, this
difference in our antithetic simulations approach is 11% for ARF10 and 14%
for ARF2, and up to 26% for the conventional algorithm, which is signif-
icant. For this reason, using a single instance for this particular deposit
and optimization model could lead to a result with a high error. Although
this conclusion is specific for this case study, this phenomenon can occur in
other models and deposits. Therefore, an in-depth analysis of the number of
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scenarios considered is recommended.
A possible extension of the antithetic simulation methodology is taking

advantage of the fixed path for each tuple. For a fixed path and neighbor-
hood, the kriging weights remain the same for each scenario, reducing the
computational cost of the simulation algorithm. The use of a single fixed
path is often discouraged since it can lead to artifacts and poor reproduction
of the covariance, but recent research has shown that this effect can be re-
duced using a larger neighborhood and a multi-grid approach (Nussbaumer
et al. (2018)). Another option to reduce the occurrence of artifacts is using
different tuples to obtain a single instance. In our case study, the use of
multiple tuples of ARF2 to generate a sample size of |S| = 10 and |S| = 20
still achieved a variance reduction, with each tuple using a different path.

4. Conclusions

An application of a variance reduction technique for a geostatistical simu-
lation framework is presented. This application was successful in generating
scenarios with negative correlation in non-conditional simulations, as well as
scenarios with lower correlation coefficient than the conventional algorithm in
conditional simulation. This led to a significant reduction of variance in the
estimation of the expected NPV value for a short-term stochastic scheduling
problem, compared to the conventional simulation algorithm. This variance
reduction technique could be used to solve very costly computational mod-
els with fewer scenarios, although the magnitude of this scenario reduction
depends on the optimization model and the deposit variability.
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Appendix A. Computer Code Availability

The proposed algorithm is implemented in sgsim_arf.for (74.4 KB),
available in https://github.com/gnelis/sgsim_antithetic since March,
2018. This implementation is based on the open source code sgsim.for from
GSLIB (Deutsch and Journel (1998), www.gslib.com), available in FOR-
TRAN77 and FORTRAN90. The code developer was Gonzalo Nelis (address:
Av. Tupper 2007, Santiago, Chile. Contact Number: +56-9-88397760. E-
mail: gnelis@delphoslab.cl). The code requires a FORTRAN compiler, and
it was tested using Windows 10. Everyone is granted permission to copy,
modify and redistribute this code, but under the condition that the original
sgsim.for copyright is preserved.
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